• Title/Summary/Keyword: Air jet

Search Result 941, Processing Time 0.025 seconds

An Experimental Study on the Extinction Limit Extension of Unsteady Counterflow Diffusion Flames (비정상 대향류 확산 화염의 소화 한계 확장에 대한 실험적 연구)

  • Lee Uen Do;Lee Ki Ho;Oh Kwang Chul;Lee Eui Ju;Shin Hyun Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.390-401
    • /
    • 2005
  • In this study, extinction limit extension of unsteady $(CH_{4}+N_{2})$/air diffusion flames was investigated experimentally. A spatially locked flame in an opposing jet burner was perturbed by linear velocity variation, and time-dependent flame luminosity, transient maximum flame temperature and OH radical were measured over time with the high speed camera, Rayleigh scattering method and OH laser-induced fluorescence, respectively. Unsteady flames survive at strain rates that are much higher than the extinction limit of steady flames, and unsteady extinction limits extend as the slope of the strain rate increases or the initial strain rate decreases. We verified the validity of the equivalent strain rate concept by comparing the course of unsteady extinction process and steady extinction process, and it was found that the equivalent strain rate concept represents well the unsteady effect of a convective-diffusive zone. To investigate the reason of the unsteady extinction limit extension, we subtracted the time lag of the convective-diffusive zone by using the equivalent strain concept. Then the modified unsteady extinction limits become smaller than the original unsteady extinction limits, however, the modified unsteady extinction limits are still larger than the steady extinction limits. These results suggest that there exist the unsteady behavior of a diffusive-reactive zone near the extinction limit due to the chemical non-equilibrium states associated with unsteady flames.

An study on the ramp tabs for thurst vector control symmetrically installed at the supersonic nozzle exit (초음속 노즐 출구에 대칭적으로 설치한 추력방향제어장치인 램프 탭의 연구)

  • Kim, Kyoung-Rean;Ko, Jae-Myoung;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.32-37
    • /
    • 2007
  • Aerodynamic forces and moments have been used to control rocket propelled vehicles. If control is required at very low speed, Those systems only provide a limited capability because aerodynamic control force is proportional to the air density and low dynamic pressure. But thrust vector control(TVC) can overcome the disadvantages. TVC is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. In this paper, the conceptual design and the study on the tapered ramp tabs of the thurst vector control has been carried out using the supersonic cold flow system and schlieren system. This paper provides the thrust spoilage, three directional forces and moments and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

A Study on Combustion and Heat Transfer in Premixed Impinging Flames of Syngas(H2/CO)/Air Part I: Characteristics of Combustion (합성가스(H2/CO)/공기 예혼합 충돌화염의 연소 및 열전달 연구 Part I: 연소특성)

  • Jeong, Byeonggyu;Lee, Yongho;Lee, Keeman
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.47-58
    • /
    • 2014
  • The characteristics of flame shape, laminar burning velocity, emissions and heat flux of stagnation point in premixed impinging jet flame of syngas fuel with 10% hydrogen content were experimentally investigated. Also, the adiabatic temperature and burning velocity are calculated by Chemkin package with USC-II mechanism. The equivalence ratios(0.8~5.0) and dimensionless separation distance(2.0~5.0) with fixed Reynolds number(1800) are main parameters in this work. Different flame shapes and colors were observed for different impingement conditions. The experimental results of burning velocity by flame surface area have a consistent with previous works and numerical simulation of this work. The inner flame length could be predicted with the ratio of mixture velocity and burning velocity from a simple formulation by the laminar burning velocity definition. It has been observed that the heat fluxes at stagnation point are directly affected by the flame shape including the separation distance. The emission results in impinging flame of syngas fuel show that the characteristics of $NO_x$ emission traced well with adiabatic temperature trend and CO emission due to fuel rich condition increased continuously with respect to the equivalence ratio.

Effect of Fabric Design Condition on the Mechanical Properties and Handle of Nylon/Cotton Union Fabrics for Sport Jacket (스포츠쟈켓용 나일론/면 교직물의 설계조건에 따른 역학적 특성과 태)

  • Kwon, Oh-Kyung;Song, Min-Kyu
    • Fashion & Textile Research Journal
    • /
    • v.5 no.3
    • /
    • pp.267-272
    • /
    • 2003
  • Tactel(Nylon66) union fabrics were woven with the specification of 70d/34f nylon as warp for sport wear jacket. Weft yarn has three types; 100% cotton yarn, nylon core-spun yarn and nylon-polyurethane covering yarn as weft. Fabric structers were plain, twill and satin weave structure with the air jet loom. The mechanical properties of 8 fabrics were measured with KES-F and primary Hand Values and Total Hand Values were calculated. The results of the study were as follows: 1) There was little difference among LTs of N/CM fabric groups. RT of the fabrics with CM100's was bigger than that of fabrics with CM80's, resulting that the fabrics with CM100's have better formability. In terms of weaving structure, twill fabrics have shape deformation. 2) In comparison of RTs with weft yarn type, RT of N-PU covering yarn was the highest, followed by Nylon core-spun yarn and cotton yarn. Thus, the fabric with N-PU covering yarn has better stability of shape deformation. 3) Stretch yarn could express an excellent silhouette formation and twill and satin structures were better structure to make curvature on human form. 4) 2HG/G value of nylon core-spun fabrics was larger than that of N/C fabrics, but the silhouette formation of N/C fabrics was excellent. 5) The RC of N/PU was the highest, followed by N/P, and N/CM. 6) Koski of N/PU fabrics was the highest, Numeri of N/PU and N/Co-I were relatively higher than the others. THVs of N/CM-IV and N/CO-II were lower than the others, resulting that, twill structure was better than plain structure for a sport wear uses.

Performance Analysis of Secondary Gas Injection for a Conical Rocket Nozzle TVC(II) (2차 가스분사에 의한 원추형 로켓노즐 추력벡터제어 성능해석 (II))

  • Song, Bong-Ha;Ko, Hyun;Yoon, Woong-Sup;Lee, Sang-Kil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.1
    • /
    • pp.18-25
    • /
    • 2001
  • The results of systematic numerical experiments of secondary gas injection thrust vector control are presented. The effects of secondary injection system such as injection location and nozzle divergent cone angle onto the overall performance parameters such as thrust ratio, specific impulse ratio and axial thrust augmentation, are investigated. Complex nozzle exhaust flows induced by the secondary jet penetration is numerically analyzed by solving unsteady three-dimensional Reynolds-averaged Navier-Stokes equations with Baldwin-Lomax turbulence model for closure. Numerical simulations compared with the experiments of secondary air injection into the rocket nozzle of $9.6^{\cire}$ divergent half angle showed good agreement. The results obtained in terms of overall performance parameters showed that locating the secondary injection orifice further downstream of primary nozzle ensures the prevention of occurrence of reflected shock wave, therefore is suitable for efficient and stable thrust vectoring over a wide range of use.

  • PDF

A Study on Drag Reduction of Cylindrical Underwater Body Using Sintered Mesh (소결 메쉬를 이용한 원통형 수중운동체 항력 감소 연구)

  • Jung, Chulmin;Paik, Bugeun;Kim, Kyungyoul;Jung, Youngrae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.195-203
    • /
    • 2018
  • Among the techniques of reducing the drag to increase the speed of underwater moving bodies, we studied on the drag reduction method by gas injection. Researches on gas injection method have been paid much attention to reduce the drag of vessels or pipe inner walls. In this study, we used a sintered metal mesh that can uniformly distribute fine bubbles by gas injection method, and applied it to a cylindrical underwater moving body. Using the KRISO medium-sized cavitation tunnel, we measured both the bubble size on the surface of the sintered mesh and the bubble distribution in the boundary layer. Then, drag reduction tests were performed on the cylinder type underwater moving models with cylindrical or round type tail shape. Experiments were carried out based on the presence or absence of tail jet injection. In the experiments, we changed the gas injection amount using the sintered mesh gas injector, and changed flow rate accordingly. As a result of the test, we observed increased bubbles around the body and confirmed the drag reduction as air injection flow rate increased.

Analysis of the factors of dental hygiene plans influencing patients of the dental hygiene program based on dental hygiene process (치위생과정에 근거한 구강건강관리프로그램 대상자의 치위생계획의 영향요인 분석)

  • Kim, Yu-Rin
    • Journal of Korean society of Dental Hygiene
    • /
    • v.18 no.2
    • /
    • pp.227-237
    • /
    • 2018
  • Objectives: This study aims to recognize the importance of dental hygiene process diagnosis of dental hygiene process which can comprehensively grasp the patient's problem and to use it as a basis for establishing the patient's preventive treatment plan. Methods: This study did survey to 443 patients who received treatment based on the oral health care program from a dental clinic in Busan from January 2015 to January 2017. Data analysis was performed using IBM SPSS Statistics (Version 21.0), and statistical significance level was set at ${\alpha}=0.05$. Binary logistic regression analysis was performed to the dental hygiene problems affecting the dental hygiene plan. Results: There were significant differences in dental hygiene problems between male and female respondents on various dental problems such as dental plaque deposition, attrition, stain, dental fear, possibility of jaw joint disorder, food pressing, possibility of malocclusion. There were also significant differences in dental hygiene plans between male and female respondents in air-Jet, non-smoking education, and sealant. The most common dental hygiene plan was scaling, The problem of stain showed that the scaling plan was 0.20 times less. The explanatory power of the model was 43.5%, and the Hosmer and Lemeshow tests were 0.345. Conclusions: Therefore, if we continue to study the factors affecting the dental hygiene problems and the plan, we can reduce the burden of the dental hygienists applying the dental hygiene process in the dental clinic. And, it is expected that the oral health care program using the dental hygiene process will spread to the dental clinic as an excellent oral preventive program.

Orthodontic bracket bonding to glazed full-contour zirconia

  • Kwak, Ji-Young;Jung, Hyo-Kyung;Choi, Il-Kyung;Kwon, Tae-Yub
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.2
    • /
    • pp.106-113
    • /
    • 2016
  • Objectives: This study evaluated the effects of different surface conditioning methods on the bond strength of orthodontic brackets to glazed full-zirconia surfaces. Materials and Methods: Glazed zirconia (except for the control, Zirkonzahn Prettau) disc surfaces were pre-treated: PO (control), polishing; BR, bur roughening; PP, cleaning with a prophy cup and pumice; HF, hydrofluoric acid etching; AA, air abrasion with aluminum oxide; CJ, CoJet-Sand. The surfaces were examined using profilometry, scanning electron microscopy, and electron dispersive spectroscopy. A zirconia primer (Z-Prime Plus, Z) or a silane primer (Monobond-S, S) was then applied to the surfaces, yielding 7 groups (PO-Z, BR-Z, PP-S, HF-S, AA-S, AA-Z, and CJ-S). Metal bracket-bonded specimens were stored in water for 24 hr at $37^{\circ}C$, and thermocycled for 1,000 cycles. Their bond strengths were measured using the wire loop method (n = 10). Results: Except for BR, the surface pre-treatments failed to expose the zirconia substructure. A significant difference in bond strengths was found between AA-Z ($4.60{\pm}1.08MPa$) and all other groups ($13.38{\pm}2.57-15.78{\pm}2.39MPa$, p < 0.05). For AA-Z, most of the adhesive remained on the bracket. Conclusions: For bracket bonding to glazed zirconia, a simple application of silane to the cleaned surface is recommended. A zirconia primer should be used only when the zirconia substructure is definitely exposed.

A Study on the Correlation of MESG and Explosion Pressure (최대실험안전틈새(MESG)와 폭발압력의 상관관계에 대한 연구)

  • Hwang, Kyungyong;Shin, Woonchul;Lee, Taeck-Kie
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.29-39
    • /
    • 2016
  • Electrical apparatuses for use in the presence of explosive gas atmospheres have to be special designed to prevent them from igniting the explosive gas. Flameproof design implies that electrical components producing electrical sparks are contained in enclosures and withstand the maximum pressure of internal gas or vapours. In addition, any gaps in the enclosure wall have to designed in such a way that they will not transmit a gas explosion inside the enclosure to an explosive gas or vapours atmosphere outside it. In this study, we explained some of the most important physical mechanism of Maximum Experimental Safe Gap(MESG) that the jet of combustion products ejected through the flame gap to the external surroundings do not have an energy and temperature large enough to initiate an ignition of external gas or vapours. We measured the MESG and maximum explosion pressure of propane and acetylene by the test method and procedure of IEC 60079-20-1:2010.When the minimum MESG is measured, the concentration of propane, acetylene in the air is higher than the stoichiometric point and their explosion pressure is the highest value.

Combustion Characteristics of a Double-cone Partial Premixed Nozzle with Various Fuel hole Patterns (이중 콘형 부분 예혼합 GT 노즐의 연료 분사구 형상 변화에 대한 연소특성)

  • Kim, Han Seok;Cho, Ju Hyeong;Kim, Min Kuk;Hwang, Jeongjae;Lee, Won June
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.25-31
    • /
    • 2020
  • Experimental investigations were conducted to examine the combustion characteristics of a swirl-stabilized double cone premixed burner nozzle used for industrial gas turbines for power generation. Several variants with different fuel injection patterns are tested to compare the combustion characteristics such as NOx and CO emissions, stability, and wall temperature distributions. Main results show that NOx emissions and stability are decreased either when the fuel hole diameter is decreased with the same number of fuel holes, or when the number of fuel holes is reduced with the same total area of fuel holes, both of which are due to a higher penetration of fuel into the air stream. Not only is NOx reduced but also stability is enhanced when the fuel hole diameter varies in an alternating manner with the same total area of fuel holes, showing that NOx reduction is due to a higher penetration of mean fuel injection path while stability enhancement is due to a lowered penetration of minimum fuel injection path.