Browse > Article
http://dx.doi.org/10.3795/KSME-B.2005.29.3.390

An Experimental Study on the Extinction Limit Extension of Unsteady Counterflow Diffusion Flames  

Lee Uen Do (한국과학기술원 대학원 기계공학과)
Lee Ki Ho (현대자동차연구소)
Oh Kwang Chul (한국과학기술원 대학원 기계공학과)
Lee Eui Ju (한국건설기술연구원)
Shin Hyun Dong (한국과학기술원 기계공학과)
Publication Information
Transactions of the Korean Society of Mechanical Engineers B / v.29, no.3, 2005 , pp. 390-401 More about this Journal
Abstract
In this study, extinction limit extension of unsteady $(CH_{4}+N_{2})$/air diffusion flames was investigated experimentally. A spatially locked flame in an opposing jet burner was perturbed by linear velocity variation, and time-dependent flame luminosity, transient maximum flame temperature and OH radical were measured over time with the high speed camera, Rayleigh scattering method and OH laser-induced fluorescence, respectively. Unsteady flames survive at strain rates that are much higher than the extinction limit of steady flames, and unsteady extinction limits extend as the slope of the strain rate increases or the initial strain rate decreases. We verified the validity of the equivalent strain rate concept by comparing the course of unsteady extinction process and steady extinction process, and it was found that the equivalent strain rate concept represents well the unsteady effect of a convective-diffusive zone. To investigate the reason of the unsteady extinction limit extension, we subtracted the time lag of the convective-diffusive zone by using the equivalent strain concept. Then the modified unsteady extinction limits become smaller than the original unsteady extinction limits, however, the modified unsteady extinction limits are still larger than the steady extinction limits. These results suggest that there exist the unsteady behavior of a diffusive-reactive zone near the extinction limit due to the chemical non-equilibrium states associated with unsteady flames.
Keywords
Unsteady Extinction Limit; Equivalent Strain Rate; Convective-Diffusive Zone; Diffusive-Reactive Zone;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 You, Y. H., Lee, D. K. and Shin, H. D., 1998, 'Visual Investigation of a Vortex Ring Interacting with a Non-premixed Flame,' Combustion Sci. and Tech. Vol. 139, p. 365   DOI
2 Jin, S. H., Nam, G. J., Kim, H. S., Chang, N. N., Park, S. H., Kim, U., Park, K. S., Sim, K. H. and Kim, K. S., 1996, 'Planar Measurements of OH and $O_2$ Number Density in Premixed $C_3H_8/O_2$ Flame Using Laser Induced Predissociative Fluorescence,' Trans. of the KSME B, Vol. 20, No. 12, pp. 4044-4052
3 Yoon, J. H. and Lee, S. J., 2000, 'Temperature Field Measurement of Non-Isothermal Jet Flow Using LIF Technique,' Trans. of the KSME B, Vol. 24, No. 10, pp. 1399-1408
4 Chelliah, H. K., Law, C. K., Ueda, T., Smook, M. D. and Williams, F. A., 1990, 'An Experimental and Theoretical Investigation of the Dilution, Pressure, and Flow-field Effects on the Extinction Condition of Methane-Air-Nitrogen Diffusion Flames,' Proceedings of the Combustion Institute 23, pp. 503-511
5 Lee, E. J., Oh, K. C. and Shin, H. D., 2000, 'Experiments on the Transient Effect of Evolving Jet Diffusion Flames,' Proceedings of the Combustion Institute, Vol. 28, pp. 2079~2084
6 Namer, I. and Schefer, R. W., 1985, 'Error Estimates for Rayleigh Scattering Density and Temperature Measurements in Premixed Flames,' Experiments in Fluids, Vol. 3, pp. 1-9   DOI
7 Kistler, J. S., Sung, C. J., Kreutz, T. G. and Law, C. K., 1996, 'Extinction of Counterflow Diffusion Flames Under Velocity Oscillations,' Proceedings of the Combustion Institute, Vol. 26, pp. 113-120
8 Brown, T. M., Pitz, R. W. and Sung, C. J., 1998, 'Oscillatory Stretch Effects on the Structure and Extinction of Counterflow Diffusion Flames,' Proceedings of the Combustion Institute, Vol. 27, pp. 703-710
9 Park, J. and Shin, H. D., 1995, 'Experimental Investigation of The Developing Process of An Unsteady Diffusion Flames,' Combustion and Flame Vol. 110, p. 67   DOI   ScienceOn
10 Korusoy, E. and Whitelaw, J. H., 2002, 'Extinction and Relight in Opposed Flames,' Experiments in Fluids, Vol. 33, pp. 75-89   DOI   ScienceOn
11 Lee, E. J. and Shin, H. D., 2003, 'Extinction of an Evolving Jet Flame Under a Linearly-Varying Flow Field,' Combust. Theory Modeling, Vol. 7, pp. 1-11   DOI   ScienceOn
12 Egolfopoulos, F. N. and Campbell, C. S., 1996, 'Unsteady Counterflowing Strained Diffusion Flames: Diffusion-Limited Frequency Response,' J. Fluid Mech., Vol. 318, pp. 1~29   DOI   ScienceOn
13 Oh, C. B. and Lee, C. E. 2001, 'Numerical Simulation of Unsteady $CH_4$/Air Jet Diffusion Flame,' Trans. of the KSME B, Vol. 25, No. 8, pp. 1087-1096   과학기술학회마을
14 Seshadri, K. and Williams, F. A., 1978, 'Laminar Flow Between Parallel Plates with Injection of a Reactant at High Reynolds Number,' Int. J. Heat Mass Transfer, Vol. 21, pp. 251-253   DOI   ScienceOn
15 Rolon, J. C., Veynante, D., Martin, J. P. and Durst, F., 1991, 'Counter Jet Stagnation Flows,' Experiments in Fluids, Vol. 11, pp. 313-324   DOI
16 Egolfopoulos, F. N., 2000, 'Structure and Extinction of Unsteady, Counterflowing, Strained, Non-Premixed Flames,' Int. J. Energy Res. Vol. 24, pp. 989~1010   DOI   ScienceOn
17 Borghi, R., 1988, 'Turbulent Combustion Modelling,' Prog. Energy Combust. Sci., Vol. 14, pp. 245-292   DOI   ScienceOn
18 Williams, F. A., 2000, 'Progress in Knowledge of Flamelet and Extinction,' Prog. Energy Combust. Sci. 26, pp. 657-682   DOI   ScienceOn
19 Saitou, T. and Otsuka, Y., 1976, 'Unsteady Behavior of Diffusion Flames and Premixed Flames for Counter Flow Geometry,' Combustion. Sci. and Tech., Vol. 12, pp. 135-146   DOI
20 Lee, U. D., Lee, K. H., Oh, K. C. and Shin, H. D., 2004, 'Changes of the Flame Temperature and OH Radical in the Unsteady Extinction Process,' Trans. of the KSME B, Vol. 28, No. 12, pp. 1557-1566   과학기술학회마을   DOI   ScienceOn
21 Yoshida, Kenji and Tagaki, Toshimi, 1998, 'Transient Local Extinction and Reignition Behavior of Diffusion Flames Affected by Flame Curvature and Preferential Diffusion,' Proceedings of the Combustion Institute, Vol. 27, pp. 685-692
22 Peters, N., 1984, 'Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion,' Progress in Energy and Combustion Science, Vol. 10, pp.319-339   DOI   ScienceOn
23 Oh, C. B. and Lee, C. E., 2003, 'Extinction in a Counterflow Non-premixed Flame Interacting with a Vortex,' Trans. of the KSME B, Vol. 27, No. 10, pp. 1401-1411   과학기술학회마을   DOI   ScienceOn
24 Peters, N., 2000, 'Turbulent Combustion,' Cambridge University Press
25 Katta, V. R., Meyer, T. R., Brown, M. S., Gord, J. R. and Roquemore, W. M., 2004, 'Extinction Criterion for Unsteady, Opposing Jet Diffusion Flames,' Combustion and Flame, Vol. 137, pp. 198-221   DOI   ScienceOn
26 Kyritsis, D. C., Santoro, V. S. and Gomez, A., 2002, 'Quantitative Scalar Dissipation Rate Measurements in Vortex-Perturbed Counterflow Diffusion Flames,' Proceedings of the Combustion Institute, Vol. 29, pp. 1679-1685
27 Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, Soonho, Gardiner W. C. Jr., Lissianski, V. V. and Qin, Z., 2000, GRI-Mech 3.0, http://www.me.berkeley.edu/gri_mech/
28 Santoro, V. S., Kyritsis, D. C., Linan, A. and Gomez, A., 2000, 'Vortex-Induced Extinction Behavior in Methanol Gaseous Flames: A Comparison with Quasi-Steady Extinction,' Proceedings of the Combustion Institute, Vol. 28, pp. 2109-2116
29 Cuenot, B., Egolfopoulus, F. N. and Poinsot, T., 2000, 'An Unsteady Laminar Flamelet Model for Non-Premixed Combustion,' Combust. Theory Modelling, Vol. 4, pp. 77-97   DOI   ScienceOn
30 Pitsch, H., Chen, M. and Peters, N., 1998, 'Unsteady Flamelet Modeling of Turbulent Hydrogen-Air Diffusion Flames,' Proceedings of the Combustion Institute, Vol. 27, pp. 1057-1064
31 Lee, J. C., Frouzakis, C. E. and Bouloushos, K., 2000, 'Numerical Study of Opposed-Jet $H_2$/Air Diffusion Flame-Vortex Interactions,' Combust. Sci. and Tech. Vol. 158, pp. 365-388   DOI   ScienceOn
32 Rolon, J. C., Aguerre, R. and Candel, S., 1995, 'Experiments on the Interaction between a Vortex and a Strained Diffusion Flame,' Combustion and Flame, Vol. 100, pp. 422-429   DOI   ScienceOn
33 Kee, R. J., Rupley, F. M., Miller, J. A., Coltrin, M. E., Grcar, J. F., Meeks, E., Moffat, H. K., Lutz, A. E., Dixon-Lewis, G., Smooke, M. D., Warnatz, J., Evans, G. H., Larson, R. S., Mitchell, R. E., Petzold, L. R., Reynolds, W. C., Caracotsios, M., Stewart, W. E., Glarborg, P., Wang, C. and Adigun, O., CHEMKIN Collection, Release 3.6, Reaction Design, Inc., San Diego, CA, 2000
34 Im, H. G, Bechtold, J. K. and Law, C. K., 1995 'Counterflow Diffusion Flames with Unsteady Strain Rates,' Combust. Sci. and Tech., Vol. 106, pp. 345-361   DOI
35 Katta, V. R. and Roquemore, W. M., 2000, 'Response of Hydrogen-Air Oposing-Jet Diffusion Flame to Different Types of Perturbations,' Proceedings of the Combustion Institute, Vol. 28, pp. 2055-2062
36 Darabiha, N., 1992, 'Transient Behavior of Laminar Counterflow Hydrogen-Air Diffusion Flames with Complex Chemistry,' Combust. Sci. and Tech. Vol. 86, pp. 163-181   DOI   ScienceOn
37 Haworth, D. C., Drake, M. C., Pope, S. B. and Blint, R. J., 1988, 'The Importance of Time-dependent Flame Structures in Stretched Laminar Flamelet Models for Turbulent Jet Diffusion Flames,' Proceedings of the Combustion Institute, Vol. 22, pp. 589-597