DOI QR코드

DOI QR Code

An Experimental Study on the Extinction Limit Extension of Unsteady Counterflow Diffusion Flames

비정상 대향류 확산 화염의 소화 한계 확장에 대한 실험적 연구

  • 이은도 (한국과학기술원 대학원 기계공학과) ;
  • 이기호 (현대자동차연구소) ;
  • 오광철 (한국과학기술원 대학원 기계공학과) ;
  • 이의주 (한국건설기술연구원) ;
  • 신현동 (한국과학기술원 기계공학과)
  • Published : 2005.03.01

Abstract

In this study, extinction limit extension of unsteady $(CH_{4}+N_{2})$/air diffusion flames was investigated experimentally. A spatially locked flame in an opposing jet burner was perturbed by linear velocity variation, and time-dependent flame luminosity, transient maximum flame temperature and OH radical were measured over time with the high speed camera, Rayleigh scattering method and OH laser-induced fluorescence, respectively. Unsteady flames survive at strain rates that are much higher than the extinction limit of steady flames, and unsteady extinction limits extend as the slope of the strain rate increases or the initial strain rate decreases. We verified the validity of the equivalent strain rate concept by comparing the course of unsteady extinction process and steady extinction process, and it was found that the equivalent strain rate concept represents well the unsteady effect of a convective-diffusive zone. To investigate the reason of the unsteady extinction limit extension, we subtracted the time lag of the convective-diffusive zone by using the equivalent strain concept. Then the modified unsteady extinction limits become smaller than the original unsteady extinction limits, however, the modified unsteady extinction limits are still larger than the steady extinction limits. These results suggest that there exist the unsteady behavior of a diffusive-reactive zone near the extinction limit due to the chemical non-equilibrium states associated with unsteady flames.

Keywords

References

  1. Peters, N., 2000, 'Turbulent Combustion,' Cambridge University Press
  2. Peters, N., 1984, 'Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion,' Progress in Energy and Combustion Science, Vol. 10, pp.319-339 https://doi.org/10.1016/0360-1285(84)90114-X
  3. Borghi, R., 1988, 'Turbulent Combustion Modelling,' Prog. Energy Combust. Sci., Vol. 14, pp. 245-292 https://doi.org/10.1016/0360-1285(88)90015-9
  4. Williams, F. A., 2000, 'Progress in Knowledge of Flamelet and Extinction,' Prog. Energy Combust. Sci. 26, pp. 657-682 https://doi.org/10.1016/S0360-1285(00)00012-5
  5. Saitou, T. and Otsuka, Y., 1976, 'Unsteady Behavior of Diffusion Flames and Premixed Flames for Counter Flow Geometry,' Combustion. Sci. and Tech., Vol. 12, pp. 135-146 https://doi.org/10.1080/00102207608946713
  6. Egolfopoulos, F. N. and Campbell, C. S., 1996, 'Unsteady Counterflowing Strained Diffusion Flames: Diffusion-Limited Frequency Response,' J. Fluid Mech., Vol. 318, pp. 1~29 https://doi.org/10.1017/S0022112096007008
  7. Egolfopoulos, F. N., 2000, 'Structure and Extinction of Unsteady, Counterflowing, Strained, Non-Premixed Flames,' Int. J. Energy Res. Vol. 24, pp. 989~1010 https://doi.org/10.1002/1099-114X(200009)24:11<989::AID-ER645>3.0.CO;2-L
  8. Kistler, J. S., Sung, C. J., Kreutz, T. G. and Law, C. K., 1996, 'Extinction of Counterflow Diffusion Flames Under Velocity Oscillations,' Proceedings of the Combustion Institute, Vol. 26, pp. 113-120
  9. Brown, T. M., Pitz, R. W. and Sung, C. J., 1998, 'Oscillatory Stretch Effects on the Structure and Extinction of Counterflow Diffusion Flames,' Proceedings of the Combustion Institute, Vol. 27, pp. 703-710
  10. Park, J. and Shin, H. D., 1995, 'Experimental Investigation of The Developing Process of An Unsteady Diffusion Flames,' Combustion and Flame Vol. 110, p. 67 https://doi.org/10.1016/S0010-2180(97)00060-6
  11. Lee, E. J., Oh, K. C. and Shin, H. D., 2000, 'Experiments on the Transient Effect of Evolving Jet Diffusion Flames,' Proceedings of the Combustion Institute, Vol. 28, pp. 2079~2084
  12. Lee, E. J. and Shin, H. D., 2003, 'Extinction of an Evolving Jet Flame Under a Linearly-Varying Flow Field,' Combust. Theory Modeling, Vol. 7, pp. 1-11 https://doi.org/10.1088/1364-7830/7/1/301
  13. You, Y. H., Lee, D. K. and Shin, H. D., 1998, 'Visual Investigation of a Vortex Ring Interacting with a Non-premixed Flame,' Combustion Sci. and Tech. Vol. 139, p. 365 https://doi.org/10.1080/00102209808952094
  14. Rolon, J. C., Aguerre, R. and Candel, S., 1995, 'Experiments on the Interaction between a Vortex and a Strained Diffusion Flame,' Combustion and Flame, Vol. 100, pp. 422-429 https://doi.org/10.1016/0010-2180(94)00180-Z
  15. Katta, V. R. and Roquemore, W. M., 2000, 'Response of Hydrogen-Air Oposing-Jet Diffusion Flame to Different Types of Perturbations,' Proceedings of the Combustion Institute, Vol. 28, pp. 2055-2062
  16. Yoshida, Kenji and Tagaki, Toshimi, 1998, 'Transient Local Extinction and Reignition Behavior of Diffusion Flames Affected by Flame Curvature and Preferential Diffusion,' Proceedings of the Combustion Institute, Vol. 27, pp. 685-692
  17. Lee, J. C., Frouzakis, C. E. and Bouloushos, K., 2000, 'Numerical Study of Opposed-Jet $H_2$/Air Diffusion Flame-Vortex Interactions,' Combust. Sci. and Tech. Vol. 158, pp. 365-388 https://doi.org/10.1080/00102200008947341
  18. Santoro, V. S., Kyritsis, D. C., Linan, A. and Gomez, A., 2000, 'Vortex-Induced Extinction Behavior in Methanol Gaseous Flames: A Comparison with Quasi-Steady Extinction,' Proceedings of the Combustion Institute, Vol. 28, pp. 2109-2116
  19. Kyritsis, D. C., Santoro, V. S. and Gomez, A., 2002, 'Quantitative Scalar Dissipation Rate Measurements in Vortex-Perturbed Counterflow Diffusion Flames,' Proceedings of the Combustion Institute, Vol. 29, pp. 1679-1685
  20. Katta, V. R., Meyer, T. R., Brown, M. S., Gord, J. R. and Roquemore, W. M., 2004, 'Extinction Criterion for Unsteady, Opposing Jet Diffusion Flames,' Combustion and Flame, Vol. 137, pp. 198-221 https://doi.org/10.1016/j.combustflame.2004.02.004
  21. Oh, C. B. and Lee, C. E. 2001, 'Numerical Simulation of Unsteady $CH_4$/Air Jet Diffusion Flame,' Trans. of the KSME B, Vol. 25, No. 8, pp. 1087-1096
  22. Oh, C. B. and Lee, C. E., 2003, 'Extinction in a Counterflow Non-premixed Flame Interacting with a Vortex,' Trans. of the KSME B, Vol. 27, No. 10, pp. 1401-1411 https://doi.org/10.3795/KSME-B.2003.27.10.1401
  23. Lee, U. D., Lee, K. H., Oh, K. C. and Shin, H. D., 2004, 'Changes of the Flame Temperature and OH Radical in the Unsteady Extinction Process,' Trans. of the KSME B, Vol. 28, No. 12, pp. 1557-1566 https://doi.org/10.3795/KSME-B.2004.28.12.1557
  24. Rolon, J. C., Veynante, D., Martin, J. P. and Durst, F., 1991, 'Counter Jet Stagnation Flows,' Experiments in Fluids, Vol. 11, pp. 313-324 https://doi.org/10.1007/BF00194863
  25. Korusoy, E. and Whitelaw, J. H., 2002, 'Extinction and Relight in Opposed Flames,' Experiments in Fluids, Vol. 33, pp. 75-89 https://doi.org/10.1007/s00348-002-0454-3
  26. Seshadri, K. and Williams, F. A., 1978, 'Laminar Flow Between Parallel Plates with Injection of a Reactant at High Reynolds Number,' Int. J. Heat Mass Transfer, Vol. 21, pp. 251-253 https://doi.org/10.1016/0017-9310(78)90230-2
  27. Chelliah, H. K., Law, C. K., Ueda, T., Smook, M. D. and Williams, F. A., 1990, 'An Experimental and Theoretical Investigation of the Dilution, Pressure, and Flow-field Effects on the Extinction Condition of Methane-Air-Nitrogen Diffusion Flames,' Proceedings of the Combustion Institute 23, pp. 503-511
  28. Namer, I. and Schefer, R. W., 1985, 'Error Estimates for Rayleigh Scattering Density and Temperature Measurements in Premixed Flames,' Experiments in Fluids, Vol. 3, pp. 1-9 https://doi.org/10.1007/BF00285264
  29. Yoon, J. H. and Lee, S. J., 2000, 'Temperature Field Measurement of Non-Isothermal Jet Flow Using LIF Technique,' Trans. of the KSME B, Vol. 24, No. 10, pp. 1399-1408
  30. Jin, S. H., Nam, G. J., Kim, H. S., Chang, N. N., Park, S. H., Kim, U., Park, K. S., Sim, K. H. and Kim, K. S., 1996, 'Planar Measurements of OH and $O_2$ Number Density in Premixed $C_3H_8/O_2$ Flame Using Laser Induced Predissociative Fluorescence,' Trans. of the KSME B, Vol. 20, No. 12, pp. 4044-4052
  31. Haworth, D. C., Drake, M. C., Pope, S. B. and Blint, R. J., 1988, 'The Importance of Time-dependent Flame Structures in Stretched Laminar Flamelet Models for Turbulent Jet Diffusion Flames,' Proceedings of the Combustion Institute, Vol. 22, pp. 589-597
  32. Im, H. G, Bechtold, J. K. and Law, C. K., 1995 'Counterflow Diffusion Flames with Unsteady Strain Rates,' Combust. Sci. and Tech., Vol. 106, pp. 345-361 https://doi.org/10.1080/00102209508907786
  33. Darabiha, N., 1992, 'Transient Behavior of Laminar Counterflow Hydrogen-Air Diffusion Flames with Complex Chemistry,' Combust. Sci. and Tech. Vol. 86, pp. 163-181 https://doi.org/10.1080/00102209208947193
  34. Cuenot, B., Egolfopoulus, F. N. and Poinsot, T., 2000, 'An Unsteady Laminar Flamelet Model for Non-Premixed Combustion,' Combust. Theory Modelling, Vol. 4, pp. 77-97 https://doi.org/10.1088/1364-7830/4/1/305
  35. Pitsch, H., Chen, M. and Peters, N., 1998, 'Unsteady Flamelet Modeling of Turbulent Hydrogen-Air Diffusion Flames,' Proceedings of the Combustion Institute, Vol. 27, pp. 1057-1064
  36. Kee, R. J., Rupley, F. M., Miller, J. A., Coltrin, M. E., Grcar, J. F., Meeks, E., Moffat, H. K., Lutz, A. E., Dixon-Lewis, G., Smooke, M. D., Warnatz, J., Evans, G. H., Larson, R. S., Mitchell, R. E., Petzold, L. R., Reynolds, W. C., Caracotsios, M., Stewart, W. E., Glarborg, P., Wang, C. and Adigun, O., CHEMKIN Collection, Release 3.6, Reaction Design, Inc., San Diego, CA, 2000
  37. Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, Soonho, Gardiner W. C. Jr., Lissianski, V. V. and Qin, Z., 2000, GRI-Mech 3.0, http://www.me.berkeley.edu/gri_mech/