• Title/Summary/Keyword: Air intake system

Search Result 258, Processing Time 0.028 seconds

Analysis of the Energy Consumption in Underfloor Air Distribution System depending on Outdoor Air Intake Rates (외기 도입에 따른 바닥급기 시스템의 에너지 사용량 분석)

  • Kim, Dong-Hee;Huh, Jung-Ho;Cho, Dong-Woo;Yu, Ki-Hyung;Yu, Ji-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.826-831
    • /
    • 2006
  • In this paper, we discussed the energy performance of underfloor air distribution(UFAD) and overhead air distribution system according to outdoor air intake rates in a office building. For this, the laboratory(S lab.) is selected for measuring the thermal environments of UFAD system and overhead system. Based on the measured data, the TRNSYS simulation is used to evaluate the energy performance of UFAD system and the overhead system according to outdoor air intake rates. By increasing outdoor air intake rates from required outdoor air intake rates(100CMH) to maximum air intake rates, the energy savings of UFAD system comparing with overhead system are varied $15%{\sim}25.6%$ in summer, $12.8%{\sim}19%$ in fall/spring and not varied in winter(8%). As results of simulations on stratification height and cooling set temperature, the lower the stratification height and the higher cooling set temperature, the larger cooling energy savings of UFAD comparing with overhead system according to outdoor air intake rates.

  • PDF

Study of Pressure and Flow in the Air-Cleaner of Commercial Vehicle (디젤엔진의 공기청정기내 압력 및 유동분포에 관한 연구)

  • 류명석;구영곤;김경훈;맹주성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.47-53
    • /
    • 1997
  • The importance of intake system can not be overstressed in the recent heavy duty commercial vehicle design. The basic requirements of intake system are to have less flow resistance and better air cleaning performance which have direct effects on the performance and service life of engine. In order to improve the performance of engine intake system, the flow phenomena in the intake system should be fully understood. With readily availble CFD code, the numerical analysis becomes the more reliable tools for flow optimization in recent design work. In this research, flow field in the intake system was analyzed by STAR-CD, the 3-D computational fluid dynamics code. Especially, the flow inside of air cleaner was thoroughly analyzed. Pressure distribution and velocity profile in the air cleaner and intake duct was obtained. Having the dust seperated from incoming air at the expense of less pressure drop is the ultimate goal for the research.

  • PDF

A Study on the Performance Improvement in the Intake System of a Large-sized Commercial Bus (대형버스 흡기시스템 성능 개선에 관한 연구)

  • Lyu, Myung-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.16-21
    • /
    • 2005
  • The performance of reciprocating internal combustion engine is a strong function of the air intake system configuration. In order to improve engine power, it is essential to optimize the air induction system. In this study, a numerical investigation has been carried out for the three-dimensional flow and pressure characteristics in air intake system of a large-sized commercial bus. CFD simulations using STAR-CD were also perform ed to evaluate effects of intake duct geometry and structure variation inside air cleaner on the negative pressure distribution of overall intake system. Studies for improving the back pressure distribution have been proposed and quantitatively examined based on intensive case studies.

Acoustic modeling of an air cleaner filter in the engine intake system (자동차 흡기계 공기 여과기 필터의 음향학적 모델)

  • Ih, Jeong-Guon;Kang, Jang-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.114-117
    • /
    • 2006
  • The air filter in engine intake system has a function of filtrating the dirt in the scavenging air as well as attenuating the noise. The noise attenuation within the air cleaner filter, however, has been regarded as negligible by the field engineers. In this paper, for the analysis of the acoustical performance of air filter, an acoustical model was suggested and the characteristics of air filter system were investigated. Fibrous structure of the filter element was modeled as a micro-perforated panel using the flow resistivity and porosity. The pleated geometry of the filter element was modeled as two coupled ducts that have permeable walls, in which each duct area was assumed being constant. Using such simplified geometry, a mathematical model was developed for the sound propagation within a narrow duct system. Visco-thermal effect was considered in modeling the sound propagation through such tubes; the filter box was modeled as a rigid rectangular box. By combining two models, a four-pole transfer matrix was derived. For the validation purpose, transmission loss was measured for a plastic rectangular box containing an air filter. A noticeable effect of the air filter element was observed by including the filter into the box. Comparing the predicted and measured data, we found that the predicted TL agrees well with experimental results, in particular, in magnitude and frequency at TL troughs.

  • PDF

The Effect of Cleaning the Intake System of LPG Vehicles on Engine and Emissions (LPG차량 흡기계통 Cleaning이 엔진 및 배출가스에 미치는 영향)

  • Hong, Sung-In;Lee, Seung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1229-1235
    • /
    • 2014
  • At the LPG vehicle air intake system, most of dust particles in the air cleaner are removed. However very small particles are not removed and accumulated. The accumulation of carbon in air intake system is going to affect the idle speed control and sensor signal. It also causes engine chattering and transmission troubles of automatic transmission. This is study about cleaning up intake system using cleaning chemical. We can clean up the intake system by spraying cleaning liquid onto intake device when the engine is idling after intake hose is removed from warmed up vehicle. We can obtain the following experimental results by cleaning up ISC, surge tank, intake manifold, intake valves and combustion chamber. According to this results, the stroll valve works correctly and power rate of engine is up to the standard, it is smoothy to control the idling speed when a vehicle pulls up. After cleaning up CO grow down about 0.15%, HC does about 20~100 ppm.

A Study on the Lean Combustion of the Gasoline Engine with Air Assisted Fuel Injection System (공기 보조 연료 분사 장치가 있는 가솔린 기관의 희박 연소에 관한 연구)

  • Kim, S.W.;Kim, E.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.117-123
    • /
    • 1994
  • This paper describes the effect of air assisted fuel injection system(AAI) using compressed air to improve the performance of lean combustion engine. AAI is designed to promote fuel atomization and intake flow. In order to investigate the performance of engine with AAl, experiments are conducted varying the engine revolution speed, lean air-fuel ratio and intake manifold pressure. Compared with the original engine, the performance of the engine with MI is improved as the air-fuel mixture becomes leaner or the engine load becomes lower. The descreasing rate of BSFC is propotional to the relative air-fuel ratio and the lean misfire limit extended more than 0.2 relative airfuel ratio.

  • PDF

COMPUTATIONAL PREDICTION OF ICE ACCRETION AROUND A ROTORCRAFT AIR INTAKE (회전익기 공기흡입구의 표면발생 결빙에 관한 전산 예측)

  • Jung, K.Y.;Ahn, G.B.;Myong, R.S.;Cho, T.H.;Jung, S.K.;Shin, H.B.
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.100-106
    • /
    • 2012
  • Ice accretion on the surface of aircraft in flight can adversely affect the safety of aircraft. In particular, it can cause degradation of critical aircraft performances such as maximum lift coefficient and total pressure recovery factor in engine air intake. In this study, computational prediction of ice accretion around a rotorcraft air intake is conducted in order to identify the impingement region with high droplet collection efficiency. Then the amount of ice accretion on the air intake, which is essential in determining the required power of ice protection system, is calculated. Finally, the effect of icing wind tunnel size is investigated in order to check the compatibility with the real in-flight test environment.

Diesel Engine Intake Port Analysis Using Reverse-engineering Technique (리버스 엔지니어링을 통한 디젤엔진 흡기포트의 성능 비교)

  • Kim, Chang-Su;Park, Sung-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.502-507
    • /
    • 2015
  • In this paper, we built a three-dimensional model by applying reverse engineering techniques on targeting the intake port of 2900cc class diesel engine before that three-dimensional design technique is applied. The performance of the intake port is predicted and analysed using the computational flow analysis. Flow Coefficient and Swirl Ratio have been analyzed for two intake port models. One is the intake port for the diesel engine with plunger-type fuel system, and the other is for the diesel engine with CRDI fuel system. Computational result shows that the Flow Coefficient of the intake port with CRDI fuel system is increased upto 10 percentage compared with that with plunger-type. Also, the intake port with plunger-type has high Swirl Ratio at high valve lift, and the intake port with CRDI fuel system has high Swirl Ratio at relatively low valve lift. It is believed that because of high performance of the fuel injector, the intake port with CRDI fuel system is designed for more air amount and not much swirl flow at high valve lift. However, high swirl flow is required at low valve lift for initial fuel and air mixing. The result of this study may be useful for the re-manufacturing industry of automotive parts.

Weight Reduction in automobile Design Through Axiomatic Approach -Developed of Integrated Air Fuel Module(I)- (공리적 접근을 이용한 자동차 경량화 설계 - 통합 흡기시스템의 개발(I))

  • 문용락;차성운;윤풍영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.106-114
    • /
    • 1999
  • Today, one of the most important objective in automobile development is to reduce the weight of automobile . The eventual depletion of petroleum and environmental regulations brought considerable emphasis to this area on increasing fuel efficiency. Conventional intake air-fuel system is very heavy because it is composed of numerous parts. The bulky size caused increase in the amount of metal being used to build automobile chassis and this became a serious weight problem. The size also caused difficulties in optimization of fuel supply system which in turn decreased engine efficiency. Currently , there are efforts to integrate several intake system modules into one. The purpose of this paper is to evaluate the directions of such development.

  • PDF

An Experimental Study of the Air Flow Rate Characteristics at Steady State in an SI Engine (SI엔진의 정상상태 유량 특성에 관한 실험적 연구)

  • 박경석;고상근;노승탁;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.1-12
    • /
    • 1997
  • In an SI engine, the characteristics of the air flow is important not only for the design of the intake system geometry but also for the accurate measurement of the induction air mass. In this study, an air flow rate measurement using the ultrasonic flow meter and hot wire flow meter was conducted at the upstream of the intake port and the throttle. At the upstream of the intake port, the pulsating flow into the cylinder affected by the pressure wave was detected directly with the flow meters instead of pressure sensors. At the upstream of the throttle, the reverse flow phenomena were showed by comparing the flow pattern measured by the hot wire air flow meter and the ultrasonic air flow meter. The results of this study can be used for the analysis of the tuning effect in the intake manifold and estimation of the error in real time measurement for the air flow rate.

  • PDF