• Title/Summary/Keyword: Air gap flux density

Search Result 132, Processing Time 0.026 seconds

EFFICIENCY OPTIMIZATION OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTORS USING GENETIC ALGORITHM (유전자 알고리즘을 이용한 매입형 영구자석 진동기의 최적 설계)

  • Cho, Dong-Hyeok;Sim, Dong-Joon;Jung, Hyun-Kyo;Hong, Sun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.3-8
    • /
    • 1995
  • Since Interior Permanent Magnet syncronous Motor has a structure whose magnet is inserted in the rotor, d, q inductance is differ and the motor products hybrid torque combined allignment term and reluctance term. Air gap flux density and d, q axis inductances of the Interior Permanent Magnet Synchronous Motor obtained by analytical method are compensated using Finite Element Method. For optimal design, the efficiency of the motor is taken as the objective function, and Genetic Algorithm finds the value of design parameters which maximize the objective function.

  • PDF

A Study of Analysis for Small Buried Type Permanent Magnet Synchronous Generator Considering Armature Resistance Effect (전기자 저항의 영향을 고려한 소형 영구자석 매입형 동기발전기 정상상태 특성 해석 연구)

  • Hong, Sun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.380-383
    • /
    • 2012
  • Small permanent magnet generator can be used not only as an emergency power source but also an exciting power source of generator for small generating systems because it does not need the external exciting power source. Especially the air-gap flux density of the buried PM synchronous generator can be increased more than that of the permanent magnet. In this study, the analysis of the small buried type PM synchronous generator is performed. From the phasor diagram considering armature resistance for exact analysis, analytic equations are induced and the efficiency, developed voltage, load current are calculated. The experimental results are compared with the calculated results for the appropriateness.

Impact of Eccentricity and Demagnetization Faults on Magnetic Noise Generation in Brushless Permanent Magnet DC Motors

  • Rezig, Ali;Mekideche, Mohammed Rachid;Djerdir, Abdesslem
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.356-363
    • /
    • 2011
  • Vibrations and noise in electrical machines are directly related to the characteristics of the radial forces on one hand, and mechanical behavior on the other [1, 4]. The characteristics of these forces depend on the air gap flux density, which is also influenced by other factors, such as stator slots and poles, saturation level, winding type, and certain faults. The aim of this work is to investigate the effect of eccentricity and demagnetization faults on electromagnetic noise generated by the external surface of Permanent Magnet Synchronous Machine [PMSM]. For this purpose, an analytical electromagnetic vibroacoustic model is developed. The results confirm the effect of eccentricity and demagnetization fault in generating some low modes radial forces.

Shape Optimization of 3D Nonlinear Electromagnetic Device Using Design Sensitivity Analysis and Mesh Relocation Method (설계 민감도법과 요소망 변형법을 이용한 3차원 비선형 전자소자의 형상최적화)

  • Ryu, Jae-Seop;Yingying, Yao;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.124-127
    • /
    • 2002
  • This paper presents a 3D shape optimization algorithm for electromagnetic devices using the design sensitivity analysis with finite element method. The structural deformation analysis based on the deformation theory of the elastic body under stress is used for mesh renewing. The design sensitivity and adjoint variable formulae are derived for the 3D nonlinear finite element method with edge element. The proposed algorithm is applied to the shape optimization of 3D electromagnet to get a uniform flux density at the air gap.

  • PDF

A study on Heat Flux of Induction Heating of steel plate using the Taguchi Method (다구찌법을 이용한 유도가열 강판의 입열량에 관한 연구)

  • 이윤창;장상균;양영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.671-674
    • /
    • 2002
  • Induction heating is a process with magnetic and thermal situation. Induction heating of flat metal products has an increasing importance in many applications, because it generates the heat within workpiece itself and provides high power densities and productivity. When the high frequency electric current flows in a coil, the process parameters which are air gap, power density, and heating time have a important roles on induction heating of steel plate. This study investigates an influence of the process parameters by means of experiments using Taguchi method.

  • PDF

Gimballing Flywheel and its Novel Reluctance Force-type Magnetic Bearing with Low Eddy Loss and Slight Tilting Torque

  • Tang, Jiqiang;Wang, Chun'e;Xiang, Biao
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.432-442
    • /
    • 2013
  • For magnetically suspended flywheel (MSFW) with gimballing capability, demerits of Lorentz force-type magnetic bearings and common reluctance force-type magnetic bearings are analyzed, a novel reluctance forcetype magnetic bearing (RFMB) including radial and axial magnetic bearing units with 4 separate biased permanent magnets and two conical stators is presented. By equivalent magnetic circuits' method, its magnetic properties are analyzed. To reduce the eddy loss, it was designed as radial poles with shoes and its rotor made of Iron-based amorphousness. Although the uniformity of magnetic flux density in the conical air gap determines mainly the additional tilting torque, the maximum additional tilting torques is 0.05Nm and the rotor tilting has no influence on its forces when the rotor tilts or the maximum changes does not exceed 14% when the rotor drifts and tilts simultaneously. The MSFW with this RFMB can meet the maneuvering requirement of spacecraft theoretically.

Analysis of the Torque Characteristics of a Multi-Degrees of Freedom Surface Permanent-Magnet Motor

  • Kang, Dong-Woo;Go, Sung-Chul;Won, Sung-Hong;Lim, Seung-Bin;Lee, Ju
    • Journal of Magnetics
    • /
    • v.15 no.1
    • /
    • pp.36-39
    • /
    • 2010
  • The multi-degrees of freedom surface permanent-magnet motor (Multi-D.O.F. SPM) has several degrees of freedom operations that are defined as the "roll", "yaw", and "pitch". Normally, the torque that is generated to rotate a rotor includes ripples. The analysis of the torque ripples is important for improving motor performance. In terms of the electric analysis, torque ripple occurs as a result of many factors, including the rotor and stator structures, the distribution of the air-gap flux density, and the waveform of the current in the coils. In particular, the torque ripple is an important factor in the stable operation of the Multi-D.O.F. SPM. Therefore, in this work, the torque ripple was analyzed using various types of magnetization for the permanent magnet. An improved model was proposed for the Multi-D.O.F. SPM based on this analysis.

Analysis on Dynamic Characteristic and Circuit Parameter of Linear Switched Reluctance Motor by Electromagnetic Analytical Method (전자기 해석법에 의한 직선형 스위치드 릴럭턴스 전동기의 회로정수 도출 및 동특성 해석)

  • Park, Ji-Hoon;Ko, Kyoung-Jin;Choi, Jang-Young;Jang, Seok-Myeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.318-327
    • /
    • 2010
  • This paper deals with analysis on dynamic characteristic and circuit parameter of linear switched reluctance motor by electromagnetic analytical method. Above all, using space harmonic method, which is electromagnetic method, the air-gap flux density is analyzed in the both align and unaign positions, and the inductance profile, force characteristic and resistance per phase are calculated by means of the process. The validity of the analyzed results are demonstrated by the finite element method(FEM) and manufacture of the prototype machine. Second, the dynamic simulation is analyzed by the use of circuit parameters derived from analytical method, and the operating system of the prototype machine is manufactured to demonstrated the validity of simulation analysis. As a result, it is considered that the characteristic equation suggested in this paper will contribute to the design, analysis and application of LSRM.

Dynamic Behavior Analysis of an Eccentric Rotor with Unbalanced Magnetic Forces in BLDC Motors (BLDC 전동기의 전자기적 불평형력을 고려한 편심 회전자의 동적 거동 해석)

  • Kim, Tae-Jong;Hwang, Sang-Mun;Park, No-Gil
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.604-610
    • /
    • 1999
  • Vibration of a rotor-bearing system driven by an electric motor is a coupled phenomenon between mechanical characteristics and magnetic origins through the air-gap. With the advent of new high-energy magnets together with high precision motor applications, magnetic sources of vibration are becoming more serious. This paper investigates the transient whirl responses of a rotor system with purely mechanical origins and compares it with that of magnetically coupled origins. A perturbation method is applied to model the magnetic field associated with rotor eccentricity. Electromagnetic forces are obtained by the Maxwell stress method, which utilizes the analytical expression of radial flux density distribution. The FEM was applied to a rotor-motor system to illustrate magnetically coupled effects in rotor dynamics. Results show that magnetically coupled sources significantly affect the vibration of the rotor-motor system.

  • PDF

Design and Characteristics of High-Speed Motor/Generator with Ring Wound Stator for the Flywheel Energy Storage System (플라이휠 에너지 저장 시스템용 Ring-Wound형 초고속 전동전기의 설계 및 특성)

  • Jang, S.M.;Ryu, D.W.;Yang, H.S.;Jeong, S.S.;Choi, S.K.;Ham, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.46-48
    • /
    • 1999
  • This paper treated the design and characteristics of high speed motor/generator with ring wound stator for the flywheel energy storage system. The most important advantages of the ring-wound motor is the slotless stator, i.e. no cogging torque, no space harmonic of air-gap flux density, etc. Because of these advantages, ring wound type motor is suitable to operate at the high speed.

  • PDF