• Title/Summary/Keyword: Air flow characteristics

Search Result 2,469, Processing Time 0.029 seconds

Numerical Study on Indoor Dispersion of Radon Emitted from Building Materials (건축자재로부터 방출되는 라돈의 실내 확산에 대한 수치해석적 연구)

  • Park, Hoon Chae;Choi, Hang Seok;Cho, Seung Yeon;Kim, Seon Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.325-332
    • /
    • 2014
  • Growing concerns about harmful influence of radon on human body, many efforts are being made to decrease indoor radon concentration in advanced countries. To develop an indoor radon reduction technology, it is necessary to develop a technology to predict and evaluate indoor inflow and emission of radon. In line with that, the present study performed computational modelling of indoor dispersion of radon emitted from building materials. The computational model was validated by comparing computational results with analytical results. This study employed CFD (Computational Fluid Dynamics) analysis to evaluate the radon concentration and the airflow characteristics. Air change rate and ventilation condition were changed and several building materials having different radon emission characteristics were considered. From the results, the indoor radon concentration was high at flow recirculation zones and inversely proportional to the air change rate. For the different building materials, the indoor radon concentration was found to be highest in cement bricks, followed by eco-carats and plaster boards in the order. The findings from this study will be used as a method for selecting building materials and predicting and evaluating the amount of indoor radon in order to reduce indoor radon.

Co-firing Characteristics and Slagging Behavior of Sewage Sludge with Coal and Wood Pellet in a Bubbling Fluidized Bed (기포 유동층 반응기를 이용한 하수 슬러지와 석탄 및 우드 펠렛의 혼소 특성 및 슬래깅 성향 연구)

  • Ahn, Hyungjun;Kim, Donghee;Lee, Youngjae
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.323-331
    • /
    • 2018
  • The results of an experimental investigation on the co-firing characteristics and slagging behavior of dried and hydrothermal carbonization sewage sludge, sub-bituminous coal, and wood pellet in a fluidized bed were presented. Combustion tests were conducted in a lab-scale bubbling fluidized bed system at the uniform fuel-air equivalence ratio, air flow rate, and initial bed temperature to measure bed temperature distribution and combustion gas composition. 4 different fuel blending cases were prepared by mixing sewage sludge fuels with coal and wood pellet with the ratio of 50 : 50 by the heating value. $NO_x$ was mostly NO than $NO_2$ and measured in the range of 400 to 600 ppm in all cases. $SO_2$ was considered to be affected mostly by the sulfur content of the sewage sludge fuels. The cases of hydrothermal carbonization sewage sludge mixture showed slightly less $SO_2$ emission but higher fuel-N conversion than the dried sewage sludge mixing cases. The result of fly ash composition analysis implied that the sewage sludge fuels would increase the possibility of slagging/fouling considering the contents of alkali species, such as Na, K, P. Between the two different sewage sludge fuels, dried sewage sludge fuel was expected to have the more severe impact on slagging/fouling behavior than hydrothermal carbonization sewage sludge fuel.

Ventilation Corridor Characteristics Analysis and Management Strategy to Improve Urban Thermal Environment - A Case Study of the Busan, South Korea - (도시 열환경 개선을 위한 바람길 특성 분석 및 관리 전략 - 부산광역시를 사례로 -)

  • Moon, Ho-Yeong;Kim, Dong-Pil;Gweon, Young-Dal;Park, Hyun-Bin
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.6
    • /
    • pp.659-668
    • /
    • 2021
  • The purpose of this study is to propose a ventilation corridor management plan to improve the thermal environment for Busan Metropolitan City. To this end, the characteristics of hot and cool spots in Busan were identified by conducting spatial statistical analysis, and thermal image data from Landsat-7 satellites and major ventilation corridors were analyzed through WRF meteorological simulation. The results showed the areas requiring thermal environment improvement among hot spot areas were Busanjin-gu, Dongnae-gu, industrial areas in Yeonje-gu and Sasang-gu, and Busan Port piers in large-scale facilities. The main ventilation corridor was identified as Geumjeongsan Mountain-Baekyangsan Mountain-Gudeoksan Mountain Valley. Based on the results, the ventilation corridor management strategy is suggested as follows. Industrial facilities and the Busan Port area are factors that increase the air temperature and worsen the thermal environment of the surrounding area. Therefore, urban and architectural plans are required to reduce the facility's temperature and consider the ventilation corridor. Areas requiring ventilation corridor management were Mandeok-dong and Sajik-dong, and they should be managed to prevent further damage to the forests. Since large-scale, high-rise apartment complexes in areas adjacent to forests interfere with the flow of cold and fresh air generated by forests, the construction of high-rise apartment complexes near Geumjeongsan Mountain with the new redevelopment of Type 3 general residential area should be avoided. It is expected that the results of this study can be used as basic data for urban planning and environmental planning in response to climate change in Busan Metropolitan City.

Study on Detailed Air Flows in Urban Areas Using GIS Data in a Vector Format and a CFD Model (벡터 형식의 GIS 자료와 CFD 모델을 이용한 도시 지역 상세 대기 흐름 연구)

  • Kwon, A-Rum;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.755-767
    • /
    • 2014
  • In this study, detailed air flow characteristics in an urban areas were analyzed using GIS data and a Computational Fluid Dynamics (CFD) model. For this, a building construction algorithm optimized for Geographic Information System (GIS) data with a vector format (Los Angeles region imagery acquisition consortium 2 geographic information system, LARIAC2 GIS) was used. In the LARIAC2 GIS data, building vertices were expressed as latitude and longitude. Using the model buildings constructed by the algorithm as the surface boundary data in the CFD model, we performed numerical simulations for two building-congested areas in Los Angeles using inflow information provided by California Air Resources Board. Comparing with the inflow, there was a marked difference in wind speed and direction within the target areas, which was mainly caused by the secondarily induced local circulations such as street-canyon vortices, horse-shoe vortices, and recirculation zones. In street canyons parallel to the inflow direction, wind speed increased due to a channeling effect and, in street canyons perpendicular to the inflow direction, vertically well developed vortices were induced. In front of a building, a horse-shoe vortex was developed near the surface and, behind a building, a recirculation zone was developed. Near the surface in the areas where the secondarily induced local circulations, wind speed remarkably increased. Overall, wind direction little (largely) changed at the areas where wind speed largely increased (decreased).

A Field Study on Remediation of Gasoline Contaminated Site by Soil Vapor Extraction (토양증기추출법에 의한 휘발유 오염토양의 현장복원 연구)

  • 김재덕;김영래;황경엽;이성철
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.13-23
    • /
    • 2000
  • The effects of operating condition of soil vapor extraction system and the characteristics of site on the remediation of oil contaminated soil were investigated. Thorough investigation showed that the site was contaminated with gasoline leaked from underground storage tank and the maximum concentration of BTEX and TPH were 1,081 ppm and 5,548 ppm respectively. The leaked gasoline were diffused to 6m deep and the area and volume of the polluted soil were assumed to 170$m^2$ and 1,000$\textrm{m}^3$respectively. The site were consisted of three different vertitical layers, the top reclaimed sandy soil between the earth surface and 3~4m deep, middle silty sand between 3~4m and 6m deep, and the bottom bedrock below the 6m deep. The air pemeability of soil was measured to 1.058-1.077$\times$10$^{-6}$ $\textrm{mm}^2$ by vacuum pump tests. The groundwater which level was 3~4m deep was observed in some areas of this site. The soil vapor extraction system which had 7.5 HP vacuum pump and 8 extraction wells was constructed in this site and operated at 8 hrs/day for 100 days. The BTEX was removed with above 90% efficiency where no groundwater and silty sand were observed. On the contrary, the efficiency of BTEX and TPH were dramatically decreased where groundwater and silty sand were observed. The flow rate of soil air induced by soil vapor extraction system was reduced in deeper soil.

  • PDF

A Numerical Calculation for the Optimum Operation of Cyclone-based Combustion System (선회류 방식 연소시스템의 최적 조업을 위한 수치해석)

  • Kim, Min-Choul;Lee, Jae-Jeong;Lee, Gang-Woo;Kim, Ji-Won;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.1005-1012
    • /
    • 2011
  • This research carried out a 3-dimensional simulation using computerized fluid dynamics (CFD) for the flow characteristics, temperature distribution, velocity distribution and residence time, etc. in a reactor in order to derive the optimal combustion conditions of an innovative combustion system. The area-weighted average temperature of the outlet of a furnace during combustion at a condition of fuel input rate 1.5 ton/hr, residence time 1.25 sec and air/fuel ratio 2.1 was $1,077^{\circ}C$, which is a suitable temperature for energy recovery and treatment of air pollutants. Exhaust gas is discharged through a duct at a 40~50 m/s maximum speed along strong vortexes at the center of a combustion chamber, so strong turbulence is created at the center of a combustion chamber to enhance the combustion speed and combustion efficiency. In this system, the optimum operation conditions to prevent incomplete combustion and suppress the formation of thermal NOx were air/fuel ratio 1.9~2.1 and fuel input rate 1.25~1.5 ton/hr.

Characteristics of Metal-Phthalocyanine for Catalytic Combustion of Methanol (메탄올의 촉매연소에 대한 금속-프탈로시아닌의 특성)

  • Seo, Seong-Gyu;Yoon, Hyung-Sun;Lee, Sun-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1809-1816
    • /
    • 2000
  • The catalytic combustion of methanol as a model volatile organic compound(VOC) was been investigated over metal-phthalocyanine(PC) in a fixed bed flow reactor system. The catalytic activity of Co-PC pretreated with air and methanol mixture at $450^{\circ}C$ and 60 cc/min for 1 hr was very excellent. The order of catalytic activity on methanol combustion was summarized as follows: metal free-PC < Zn-PC < Fe-PC < Cu($\alpha$)-PC < Co-PC. By TG/DTA analysis, the tendency of thermal decomposition was increased as follows: metal free-PC < Zn-PC < Cu($\alpha$)-PC < Co-PC < Fe-PC. Under this pretreatment condition, the basic structures of Co-PC, Cu($\alpha$)-PC and Fe-PC were destroyed, and the new metal oxide such as $Co_3O_4$ from Co-PC was confirmed by EA and XRD analysis. But Zn-PC and metal free-PC were retained its basic structure under this pretreatment condition. On the combustion of methanol over Co-PC, HCHO and $HCOOCH_3$ were observed as an intermediate products in the high concentration of reactant or the short contact time(W/F).

  • PDF

Characteristics of Proteins and Total Suspended Solids Removal by Counter Current Air Driven Type, High Speed Aeration Type and Venturi Type Foam Separator in Aquacultural Water (향류 공기 구동식, 고속 폭기식 및 벤튜리식 포말분리기에 의한 양어장수의 단백질 및 부유 고형물의 제거 특성)

  • SUH Kuen-Hack;KIM Byong-Jin;KIM Sung-Koo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.3
    • /
    • pp.205-212
    • /
    • 2000
  • Experimental investigations on the removal of protein, total suspended solids and turbidity from aquacultural water were carried out by using three types of foam separator: counter current air driven type foam separator (CCADFS), high speed aeration type foam separator (HSAFS) and venturi type foam separator (VFS). The decrease of flow rate by CCADFS, HSAFS and VFS were $0.4,\;66.1,\;77.2 {\%}$ respectively. Protein removal rates by three types foam separator were decreased with the increased hydraulic residence time (HRT). Bellw 0.32 minute and 0.21 minute of hydraulic residence times, protein removal rate of HSAFS and YES was higher than that of CCADFS, respectively. Protein removal rate of VFS was lower than that of HSAFS at any HRT. As increasing the HRT, protein removal efficiency of CCADFS was increased, but that of HSAFS and VES were decreased. The changes of removal rates and efficiencies of total suspended solid and turbidity were similar to proteins.

  • PDF

Thermal Environment Analysis for Preserving Ancient Mural Painting in Songsan-ri Tomb No. 6, Gongju, Korea (공주 송산리 6호 벽화고분 보존을 위한 온열환경 분석 연구)

  • Kim, Dae Woon;Jeong, Sun Hye;Lee, Min Young;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.32 no.4
    • /
    • pp.521-534
    • /
    • 2016
  • Ancient tombs are typically comprised of confined rooms, which have different spatial characteristics than the external environment because they are covered by heavy layers of soil. In this study, we examined the thermal energy flow from the outside to inside of Songsan-ri tomb No. 6. External heat flows slowly to the inside because of heavy soil layer, and the presence of several rooms and entrances. For this reason, it takes about two months for the air temperature to travel from the outside to the inside of the tomb. Interestingly, the gradational inflow of thermal energy from outside the tomb leads to delicate horizontal and vertical variations in the wall temperature. These micro-environmental differences occur in the inner tomb every year, so we can expect them to cause condensation with regularity. In addition, we show that the previously installed forced circulation air conditioning system risks fatal damage to the mural wall painting. The results of this research suggest an optimal air conditioning system and optimized space planning to conserve Songsan-ri tomb No. 6 and its mural painting.

A numerical Study for Improvement of Indoor Air Quality of Apartment House (공동주택 단지의 실내 공기질 향상을 위한 수치 해석적 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Hong, Ji-Eun;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.521-530
    • /
    • 2009
  • This study has been made to execute a research in order to lead the improvement of indoor air quality, examining the indoor ventilation characteristics by using a numerical analysis method. To this end an extensive parametric investigation are made according to various external flow variables such as main wind direction and wind speed by season, building layout design, and location of ventilators, etc. in Daedeok Techno Valley, one of large-scaled apartment in Daejeon. It is observed there was a significant difference of main wind direction between summer and winter. The main wind direction in summer was a south wind, and on the contrary the direction in winter is northnorthwest, which is similar to the average main wind direction for 10 years. One of the important calculation results is that the change of wind direction causes a significant effect on the apartment ventilation by the change of pressure difference around each complex of apartment. In case of favorable area of ventilation, the indoor ventilation rate can meet 0.7 ACH from the standard value only with natural ventilation. On the contrary, in other area the value was much lower than the standard value. If the calculation result applies to the design of layout apartment or placement of ventilators, it will be greatly helpful to the energy saving because it can be parallel with the natural ventilation to help securing ventilation rate, not much depending on the mechanical ventilation.