• Title/Summary/Keyword: Air exposure

Search Result 1,332, Processing Time 0.027 seconds

Exposure to Benzene Associated with Gasoline and Environmental Tobacco Smoke (휘발유 및 환경 담배 연기 관련 벤젠 노출)

  • 조완근;문경조
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.319-323
    • /
    • 1999
  • This study was designed to evaluate the exposure to benzene by residents in neighborhoods near a major roadways, by persons waiting buses, and by drivers and service station attendants while refueling. It was confirmed that the outdoor air benzene concentrations near the major roadways were higher than those further away from the sources. However, neither the indoor air nor breath concentrations were different for two specified residential areas. Smoking was confirmed as an important factor for the indoor air benzene levels. Persons waiting buses, drivers and service station attendants were exposed to elevated benzene levels compared to even the residents in neighborhoods near a major roadways. The mean benzene concentration at bus stop was 2.7 to 6.9 times higher than the mean ambient air concentration. The mean benzene concentrations in the breathing zone of drivers and service station attendants were 95 to 160 and 120 to 202 times higher than the mean ambient air concentrations, respectively.

  • PDF

A Study on the Development of the Air Pollution-Health Risk Model : The case of Seoul, Korea. (都市大氣汚染이 市民健康에 미치는 危險性 評價 模型의 開發에 관한 硏究)

  • 김귀곤;김명진;성현찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.30-35
    • /
    • 1989
  • To effectively develop and evaluate air pollution control measures, health risk rates due to air pollution must be identified. This article describes the application of a visual analysis and an air pollution-health risk model for determining the impacts of carbon monoxide (CO) exposure on angina pectoris patients in a metropolitan area. The procedures used for analyzing the relationship between CO exposure and the related increase in angina angina attacks for stable angina pectoris patients are described through a case study in the city of Seoul, Korea and the findings show that air-pollution-health risk model and visual analysis can be effective tools for environmental decision-makers, allowing air pollution control scenarios to be developed and evaluated for environmental protection. One of the features of this study is to provide a methodology for translating clinical findings into estimates of the relative contributions of air pollution to all causes of a particular disease. Therefore, there must be appropriate recognition of the uncertainties involved in the study.

  • PDF

Analysis of Cosmic Radiation Exposure for Domestic Flight Crews in Korea

  • Ahn, Hee-Bok;Hwang, Junga;Kwak, Jaeyoung;Kim, Kyuwang
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.51-57
    • /
    • 2022
  • Cosmic radiation exposure of the flight crews in Korea has been managed by Radiation Safety Management around Living Life Act under Nuclear Safety and Security Commission. However, the domestic flight crews are excluded from the Act because of relatively low route dose exposure compared to that of international flight crews. But we found that the accumulated total annual dose of domestic flight crews is far from negligible because of relatively long total flight time and too many flights. In this study, to suggest the necessity of management of domestic flight crews' radiation exposure, we statistically analyzed domestic flight crew's accumulative annual dose by using cosmic radiation estimation models of the Civil Aviation Research Institute (CARI)-6M, Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS), and Korean Radiation Exposure Assessment Model (KREAM) and compared with in-situ measurements of Liulin-6K LET spectrometer. As a result, the average exposure dose of domestic flight crews was found to be 0.5-0.8 mSv. We also expect that our result might provide the basis to include the domestic flight crews as radiation workers, not just international flight attendants.

Exposure Assessments for Children in Homes and in Daycare Centers to NO2, PMs and Black Carbon

  • Lee, Jae Young;Kim, Changhyeok;Kim, Jongbum;Ryu, Sung Hee;Bae, Gwi-Nam
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.204-214
    • /
    • 2018
  • Indoor air quality was investigated in homes and daycares located in areas with heavy traffic in Seoul, South Korea from November 2013 to January 2014. Indoor and outdoor air quality measurements were collected for 48 hours in four children's homes and daycare centers. The I/O ratio (Indoor to outdoor ratio) for each major air pollutant ($NO_2$, black carbon, $PM_{10}$, and $PM_{2.5}$) was calculated, and $NO_2$ and $PM_{10}$ concentration profiles were analyzed based on indoor activity diaries recorded during the 48 hours. Most I/O ratios for $NO_2$, black carbon, $PM_{10}$, and $PM_{2.5}$ at daycare centers were less than one. At homes, I/O ratios for black carbon, $PM_{10}$, and $PM_{2.5}$ were less than one; however, most I/O ratios for $NO_2$ were greater than one due to the usage of gas stoves. The children's exposure to indoor air pollutants was calculated using a time-weighted average exposure method, and the daily intake level for each pollutant was determined.

Childrens' Health Risk Assessment on Indoor Hazardous Air Pollutants of Preschool Facility (유아교육시설 내 실내공기유해오염물질에 대한 어린이 건강위해성평가)

  • Koh, Yeon-Jung;Kim, Shin-Do;Park, Suk-Young;Jang, Seong-Ki
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.2
    • /
    • pp.78-85
    • /
    • 2009
  • In this study, the hazard rate of the indoor environment of Children's Educational Facilities in Seoul was conducted, in order to determine how the indoor environments of these facilities, where infants and children spend the most time of their away from home day, can effect their health. The way of measurement and analysis were done according to the Indoor Air Quality Standard Method, and the Risk Assessment was accomplished with several significant ways - Hazard Identification, Exposure Assessment, Dose-response Assessment, Risk Characterization, which are deighed by National Research Council (NRC). On each exposure factors, documentary and questionary research such as Epidemiological study and Toxicological study were conducted. The result of the CTE (Central tendency exposure) of Formaldehyde and Benzene by Monte-Carlo simulation was $6.79{\times}10^{-6}$, $2.50{\times}10^{-7}$ which in the case of Formaldehyde exceeded the permitted standard ($10^{-6}$) of the US EPA. The RME(Reasonable maximum exposure) was $7.31{\times}10^{-5}$, $2.65{\times}10^{-6}$ which did not exceed $10^{-4}$, the maximum permitted standards in the US EPA.

Air Pollution and Respiratory Symptoms of School Children in a Panel Study in Seoul (대기오염 노출과 초등학교 학생들의 호흡기계 증상에 관한 패널 연구)

  • Lee, Bo-Eun;Park, Hye-Sook;Kim, Ho;Lee, Hyun-Jung;Lee, Yeon-Kyoung;Lee, Seung-Joo;Hong, Yun-Chul;Ha, Eun-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • v.38 no.4
    • /
    • pp.465-472
    • /
    • 2005
  • Objectives : The aim of this study was to assess the effect of air pollution on the daily respiratory symptoms of elementary school children in Seoul. Methods : Using the panel study design, we collected diary data for the children's respiratory symptoms during the 1st day$\sim$15th day of April, July, October and December in 2003 among the 2nd and 3rd grade elementary school students. We merged the respiratory symptom data with the ambient air pollution data that was monitored by Ministry of Environment. Using a generalized estimate equation, we evaluated the relationship between the daily symptoms of the subjects and the exposure to ai r pollution after controlling for various potential confounders. Results : The nitrogen dioxide (NO2) exposure of the current day significantly increased the upper respiratory symptoms (adjusted odds ratio=1.12, 95% CI=1.01-1.24) and the lower respiratory symptoms (adjusted odds ratio=1.18, 95% CI=1.06-1.31) in the elementary school children. The sulfur dioxide (SO2) and carbon monoxide (CO) exposure in the current day was associated with the lower respiratory symptoms (adjusted odds ratio=1.12, 95% CI=1.01-1.25 for SO2; adjusted odds ratio=1.16, 95% CI=1.02-1.32 for CO). Conclusions : We found that exposure to air pollution affects the daily respiratory symptoms in children. This study suggests that the effect on children's health? due to the short term changes in air pollution levels needs to be considered as an important public health problem.

A Proposal for a Predictive Model for the Number of Patients with Periodontitis Exposed to Particulate Matter and Atmospheric Factors Using Deep Learning

  • Septika Prismasari;Kyuseok Kim;Hye Young Mun;Jung Yun Kang
    • Journal of dental hygiene science
    • /
    • v.24 no.1
    • /
    • pp.22-28
    • /
    • 2024
  • Background: Particulate matter (PM) has been extensively observed due to its negative association with human health. Previous research revealed the possible negative effect of air pollutant exposure on oral health. However, the predictive model between air pollutant exposure and the prevalence of periodontitis has not been observed yet. Therefore, this study aims to propose a predictive model for the number of patients with periodontitis exposed to PM and atmospheric factors in South Korea using deep learning. Methods: This study is a retrospective cohort study utilizing secondary data from the Korean Statistical Information Service and the Health Insurance Review and Assessment database for air pollution and the number of patients with periodontitis, respectively. Data from 2015 to 2022 were collected and consolidated every month, organized by region. Following data matching and management, the deep neural networks (DNN) model was applied, and the mean absolute percentage error (MAPE) value was calculated to ensure the accuracy of the model. Results: As we evaluated the DNN model with MAPE, the multivariate model of air pollution including exposure to PM2.5, PM10, and other atmospheric factors predict approximately 85% of the number of patients with periodontitis. The MAPE value ranged from 12.85 to 17.10 (mean±standard deviation=14.12±1.30), indicating a commendable level of accuracy. Conclusion: In this study, the predictive model for the number of patients with periodontitis is developed based on air pollution, including exposure to PM2.5, PM10, and other atmospheric factors. Additionally, various relevant factors are incorporated into the developed predictive model to elucidate specific causal relationships. It is anticipated that future research will lead to the development of a more accurate model for predicting the number of patients with periodontitis.

Density and Water Absorption Properties of Matrix Mixing with Powdered Active Carbon according to Binder Type (결합재 종류에 따른 분말활성탄소를 혼입한 경화체의 밀도 및 흡수율 특성)

  • Pyeon, Su-Jeong;Kim, Won-Jong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.111-112
    • /
    • 2017
  • Radon has been considered the greatest source of exposure within the total radiation exposure of the human body. xposure from radon, which exists in indoor air quality, lacks public perception, Radon, which exists anywhere on earth, is not regarded as a state of attention even if it is above the average level. Indoor radon exposure situations are not intentionally introduced, and essentially the attention and responsibilities of radon exposures are assumed to be in indoor occupants. So, these are caused by common uranium and thorium scattering on Earth, and are brought into the building by fine cracks or exposed indicators of the buildings. Therefore, this study aims to reduce the risk of radon rays and reduce radon, which induces diseases caused by breathing in the body of indoor air pollutants and emitting diseases by emitting alpha rays from the radon gas.

  • PDF

Analysis of Air Quality and the Management Plan for Exposure to Hazardous Substances in the Garage of a Fire Station (소방청사 차고지 공기질 분석 및 유해물질 노출 관리 방안)

  • Park, Je-Seop;Han, Dong-Hun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.4
    • /
    • pp.394-404
    • /
    • 2020
  • Objectives: The aims of this study are to derive the characteristics of diesel exhaust gas emissions generated during vehicle checking in the garage of fire stations and of the related improvement plans for proper air quality management. Methods: The researcher measured changes in the air quality inside garages according to the operating conditions of the exhaust facility and before and after vehicle checking at three fire stations. Results: During the checking of fire engines, a large volume of hazardous substances exceeding management standards were generated, and improvement of the discharge facilities was required for proper air quality management. Conclusions: It is necessary to study the hazard evaluation of firefighters' exposure to exhaust gas, to operate exhaust gas ventilation facilities, and to prepare technical standards for proper indoor air quality management.

Direction for the management of air pollutants based on health risk in Korea (위해성을 고려한 대기오염물질의 관리 방향)

  • Kim, Young Ju;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.13 no.2
    • /
    • pp.43-52
    • /
    • 2017
  • Policy direction for the management of air quality in Korea has been on the reduction of the average concentrations of the criteria air pollutants such as sulfur dioxide and fine particles. However, recently, risk based management of air pollutants becomes an important issue. In this study, to develop an effective air quality management policy direction in Korea, (1) the fourth Multiple Air Toxics Exposure Study (MATES IV) carried out in the South Coast Air Quality Management District (SQAQMD) in the USA is reviewed and (2) the results are compared with in these in Seoul and (3) policy directions are suggested. It was found that (1) systematic integrated study comprising of measurement, modeling, emission inventory estimation, and risk assessment was essential to estimate the health risk of air pollutants reliably, (2) cancer risk of diesel particle was dominant over other air pollutants, and (3) health risk based emissions were different from amount based emissions. It was suggested that (1) reducing the exposure from hot spots might important to reduce health risk from air pollutants and (2) an integrated air quality management administration system is important for the efficient management of air pollution.