• Title/Summary/Keyword: Air breakdown

Search Result 234, Processing Time 0.043 seconds

Electrical Breakdown In flames

  • Uhm, Han S.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.1
    • /
    • pp.33-37
    • /
    • 2000
  • Properties of electrical discharge in flames and influence of plasma electrons on gas neutrals are investigated by making use of the ionization cross section of air. Frames have three distinctive features. They are hot, emit light and are weakly ionized. We investigate influence of these three characteristics of flames on the electrical breakdown. It is found that the breakdown electric field in flames is inversely proportional to the flame temperature T$\_$g/, thereby easily generating plasmas in flames. A swarm of low-energy electrons in flames would allow a significant population of electronically excited states of flame molecules to be formed. Therefore, the analysis shows that the electronic excitation of flame molecules may also considerably reduce the breakdown field. Plasma electrons generate atomic oxygen by the electron attachment of oxygen molecules in high-pressure flames. These oxygen atoms are the most reactive radicals in flames for material oxidation.

  • PDF

characteristic of breakdown voltage of electrode material in vacuum (진공에서 전극 재질에 따른 절연파괴 전압 특성 파악)

  • Lee, Seung-Su;Her, June;Yoon, Jae-Hun;Lim, Kee-Joe;Kang, Seong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.101-102
    • /
    • 2008
  • SF6 widely used as insulating gas is rising as the environment problem. For decreasing this greenhouse gas, electrical breakdown characteristics of vacuum with air are studied in non-uniform field. The gap of needle to plane was 0.5mm. The pressure of vacuum the range of 10^-4${\sim}$10^-5torr. The diameter of a plane made of the stainless steel is 150mm. As a result of the experiment, the breakdown voltage is increased about degree of vacuum increased. The electrode material influenced breakdown voltage in vacuum.

  • PDF

The Characteristics of Electrical Breakdown of Dielectric Paper and Cable under mechanical stress (기계적 응력상태에서 절연지 및 케이블의 전기절연 특성)

  • Kim, Young-Seok;Kwag, Dong-Soon;Kim, Hae-Jong;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.3-6
    • /
    • 2003
  • The electrical and mechanical properties of dielectric paper and cable at cryogenic temperature have been investigated to optimum insulating design of high-Tc superconducting(HTS) cable. From the results, Tensile strength of PPLP in liquid nitrogen was high more than that of air, but tensile strain could know that decrease sharply. According as tensile strength increases, the breakdown stress of PPLP in liquid nitrogen was decreased because PPLP was degradated. According as bending radius multiple is decrese, breakdown voltage decreased sharply. And bending radius multiple is thought that more than about 25 is suitable.

  • PDF

Electrical Breakdown in Flames

  • Han, S.Uhm
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.187-187
    • /
    • 2000
  • Properties of electrical discharge in flames are investigated by making use of the ionization cross section of air. Fames have three distictive features. They are hot, emit light and are weakly ionized. We investigate influence of these three characteristics of flames on the electrical breakdown. It is found that the breakdown electric field in flames is inversely proportional to the flame temperature, thereby easily generating plasmas in flames. A swarm of low-energy electrons in flames would allow significant population of electronically excited states of flame molecules to be formed. Therefore, the analysis shows that the electronic excitation of flame molecules may also considerably reduce the breakdown field. Plasma electrons generate atomic oxygens by the electron attachment of oxygen molecules in high-pressure flames. These oxygen atoms are the most reactive radicals in flames for material oxidation. How are you and your family in this new year\ulcorner Professor Choi! I plan to go back Korea on February 6. All my family members are fine and have good time because I am here. Once I am in Korea, I will call you. I am always grateful for your helpful hand. Thank you so much.

  • PDF

A Study on Characteristics of Insulation Breakdown by the Mixing Ratio of enhanced Dry Air and SF6 (개선된 Dry Air와 SF6의 혼합비에 따른 절연파괴 특성 연구)

  • Seok, Jeong-Hoo;Beak, Jong-Hyun;Lim, Dong-Young;Bae, Sungwoo;Kim, Ki-Chai;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.86-93
    • /
    • 2016
  • It is very desirable that a mixture gas possessing excellent insulation performance is suggested for insulation on increasing high voltage. This paper proposes a $SF_6$ mixture gas based on the factors including dielectric strength, environmental impact and economic feasibility of manufacture for the insulation in eco-friendly power equipment. A suitable-$SF_6$ content was determined to improve the dielectric strength in $N_2$ and Dry Air. The examination results of the factors revealed that a $SF_6$/Dry Air mixture gas possessing the $SF_6$ content was more appropriate than a $SF_6/N_2$ mixture gas to the eco-friendly power equipment. In addition to the selection of the suitable $SF_6$ mixture gas, insulation characteristics as a function of $SF_6$ content were described from electron-detachment mechanism.

Impulse Breakdown Behaviors of Dry Air as an Alternative Insulation Gas for SF6

  • Li, Feng;Yoo, Yang-Woo;Kim, Dong-Kyu;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.3
    • /
    • pp.24-32
    • /
    • 2011
  • [ $SF_6$ ]gas, which has an excellent dielectric strength and interruption performance, is used in various applications such as gas insulated switchgear (GIS) in substations. However, since $SF_6$ has a high global warming potential (GWP), it is necessary to find an eco-friendly alternative insulation gas. In order to examine the possibility of using alternative insulation gases for $SF_6$ in power distribution system equipment, the dielectric strength and physical phenomena of dry air in a quasi-uniform electric field are investigated experimentally in this paper. As a result, the breakdown voltages for positive polarity are higher than those for negative polarity under impulse voltage applications. The negative 50[%] flashover voltage, $V_{50}$ of dry air under conditions above 0.4[MPa] gas pressure, is higher than 150[kV], that is the basic impulse insulation level of distribution equipment. The $V_{50}$ increases linearly with increasing the gas pressure, regardless of the waveform and polarity of the applied impulse voltages. The voltage-time curves are dependent on the rise time of the impulse voltage and gas pressure. Furthermore, streamer discharge was observed through light emission images by an ICCD camera under impulse voltage applications.

The Partial Discharge Characteristics of the XLPE According to the Tilt of the Needle Electrode (침 전극 기울기에 따른 XLPE의 부분 방전 특성)

  • Shin, Jong-Yeol;Ahn, Byung-Chul;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.1
    • /
    • pp.28-33
    • /
    • 2015
  • The needle electrode is inserted into the cross-linked polyethylene(XLPE) which is the ultra high voltage cable for electric power. By changing the tilt of the needle electrode, we investigated how the void and the thickness of the insulating layer influence the partial discharge(PD) characteristics and the insulating breakdown. In order to investigate the PD characteristics, The XLPE cable was used to the specimens and the tungsten electrode was used with the needle electrode. And the inner semi-conductive layer material of XLPE cable was used with the negative electrode by bonding with the use of conduction tape. The size of the specimens was manufactured to be $16{\times}40{\times}30[mm^3]$. We confirmed the effect on changing the PD characteristics according to the changing voltage and the tilt of the electrode after applying the voltage on the electrode from 1[kV] to 40[kV] at room temperature. In the PD characteristics, it was confirmed that the PD current of air void specimens with tilt was unstable more than that of no void specimens with tilt. It was also confirmed that the breakdown voltage was decreased because the effect of air void is more active than the change of the needle electrode tilt in the specimen with air void inside the insulation.

Insulation Breakdown Characteristics of Inverter Surge Resistant Enameled Wire Prepared with Organic/Inorganic Hybrid Nanocomposite

  • Park, Jae-Jun;Shin, Seong-Sik;Lee, Jae-Young;Han, Se-Won;Kang, Dong-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.190-193
    • /
    • 2015
  • Insulation breakdown characteristics of an inverter surge resistant enameled wire were investigated in a twisted pair prepared with organic/inorganic hybrid nanocomposite. Organic polymer was polyesterimide-polyamideimide (EI/AI) and inorganic material was a nano-sized silica. The enamel thickness was 50 μm and the diameters of enameled copper wires were 0.75, 1.024, and 1.09 mm, respectively. There were many air gaps in a twisted pair. Therefore, when the voltage was applied to the twisted pair, enamel erosion took place in the air gap area because of partial discharge according to Paschen’s law. The insulation lifetime of the hybrid wire (HW) was 41,750 sec, which was 515.4 times more than the 81 sec of EI/AIW. In addition, the shape parameter of HW was 2.58, which was 3.4 times higher than 0.75 of EI/AIW.

Development of LIBS Plug for Combustor Diagnosis (연소실 진단을 위한 LIBS 소형화 장비 개발)

  • Jun, Hyung Min;Kim, Hyunwoo;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.53-59
    • /
    • 2019
  • LIBS plug, a simplified laser-induced breakdown spectroscopy(LIBS) device with the purpose of measuring the fuel distribution inside the combustion chamber, was developed and manufactured. The LIBS plug receives only two wavelengths (H:656.3 nm, O: 777 nm) that are closely related to the equivalence ratio in the overall spectrum. The calibration curve between the signal of the LIBS plug and the equivalence ratio was constructed, and the fuel distribution of gasoline-air and LPG-air mixtures was measured using the LIBS plug.