• Title/Summary/Keyword: Air battery

Search Result 279, Processing Time 0.024 seconds

Comparison of Traction Motor design and characteristics for battery driven hybrid tram (무가선 트램용 추진 전동기 설계 및 특성 비교)

  • Ham, Sang-Hwan;Kim, Kwang-Soo;Kim, Mi-Jung;Lee, Hyung-Woo;Lee, Ju
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1383-1388
    • /
    • 2010
  • The latest generation of tram is low-floor design, various nations in europe and japan have developed battery driven hybrid trams that combine battery and wiring. Battery driven tram system is achieved by contactless power supply system, thus system is needed high efficiency, high power and low weight traction motor for maximization of energy efficiency. Research from abroad is still in induction motor(IM) application, and it is not meet the efficiency and the power per unit volume in IPMSM. In this paper, we design compare IM and IPMSM to apply battery driven tram, and then compare these motors. To design the motor, we estimate the loading condition at first. Loading condition includes rolling resistance, air-drag resistance, and slope resistance. Based on the loading condition by estimation, we determine the power and compute rated voltage and rated current. In this paper, voltage is limited by battery voltage level. As a result, volume about IM is 1.98 times bigger than IPMSM under same condition. Even though IPMSM is bigger than IM in power density per volume, we consider more factors for actual application because there are demagnetization of permanent magnet in IPMSM and so on by external environment conditions.

  • PDF

Robust Frame Design for Battery Exchange-Type Electric Motorcycle (배터리 교환형 전기 이륜차 활성화를 위한 프레임 강건 설계)

  • Kim, Sang-Hyun;Kim, Gaun;Na, Dayul;Park, Jungwoo;Yu, Dahae;Rho, Kwanghyun;Lee, Jaesang;Zu, Seoungdon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.113-118
    • /
    • 2020
  • Recently, eco-friendly electric motorcycles have been considered to replace aging gasoline motorcycles to reduce the amount of suspended fine dust in air. However, existing rechargeable battery-powered electric motorcycles have been found unacceptable by users because of their many limitations, such as long charging time, short travel distance per charge, and low driving speed. To overcome the drawbacks of conventional electric motorcycles, this paper proposes an exchangeable battery-powered electric motorcycle and a new frame shape for housing the exchangeable battery. The proposed frame is similar to that of current electric motorcycles; however, the shape and position of the saddle support, battery, and controller mount section are redesigned. The safety of the presented frame is verified through static and dynamic analyses using ABAQUS. In particular, the dynamic analysis is conducted under the most extreme condition among the various operating situations, thus confirming the robustness of the proposed frame design.

Preparation of Porous Separators for Zn Air Batteries Through Phase Inversions of Polyethersulfone-PVP Solutions (Polyethersulfone-PVP 용액의 상전이를 통한 아연공기전지의 다공성 분리막 제조)

  • Cho, Yu Song;Koo, Ja-Kyung
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.10-19
    • /
    • 2014
  • Porous flat sheet membranes for separators in Zn air batteries were prepared with polyethersulfone (PES) solutions by immersion precipitation phase inversion method. PES/polyvinylpyrrolidone(PVP)/N-methylpyrrolidone(NMP) mixtures were used for casting solutions and water was used for coagulant. With the separators, Zn air batteries were fabricated. The separators were characterized by means of stress-strain test, impedance test and SEM. The Zn air batteries were tested by current interrupt method (CIM) and galvanostatic discharge method. The tensile strength increased with increasing PES content in the casting solution while the ionic conductivity decreased. On the other hand, the ionic conductivity increased while the tensile strength decreased with increasing PVP content. The effect of ionic conductivity trend of the separator in the Zn air battery was confirmed through current interrupt method and galvanostatic discharge method experiments. The battery with the separator from casting solution with higher PES content showed higher IR drop and lower discharge capacity. And the battery with the separator from casting solution with higher PVP content showed lower IR drop and higher discharge capacity.

Development of Micro-Tubular Perovskite Cathode Catalyst with Bi-Functionality on ORR/OER for Metal-Air Battery Applications

  • Jeon, Yukwon;Kwon, Ohchan;Ji, Yunseong;Jeon, Ok Sung;Lee, Chanmin;Shul, Yong-Gun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.425-431
    • /
    • 2019
  • As rechargeable metal-air batteries will be ideal energy storage devices in the future, an active cathode electrocatalyst is required with bi-functionality on both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during discharge and charge, respectively. Here, a class of perovskite cathode catalyst with a micro-tubular structure has been developed by controlling bi-functionality from different Ru and Ni dopant ratios. A micro-tubular structure is achieved by the activated carbon fiber (ACF) templating method, which provides uniform size and shape. At the perovskite formula of $LaCrO_3$, the dual dopant system is successfully synthesized with a perfect incorporation into the single perovskite structure. The chemical oxidation states for each Ni and Ru also confirm the partial substitution to B-site of Cr without any changes in the major perovskite structure. From the electrochemical measurements, the micro-tubular feature reveals much more efficient catalytic activity on ORR and OER, comparing to the grain catalyst with same perovskite composition. By changing the Ru and Ni ratio, the $LaCr_{0.8}Ru_{0.1}Ni_{0.1}O_3$ micro-tubular catalyst exhibits great bi-functionality, especially on ORR, with low metal loading, which is comparable to the commercial catalyst of Pt and Ir. This advanced catalytic property on the micro-tubular structure and Ru/Ni synergy effect at the perovskite material may provide a new direction for the next-generation cathode catalyst in metal-air battery system.

A Study on the Application of Domestic ferry to a Battery Propulsion Ship connected with Photovoltaic System (태양광 발전시스템이 연계된 배터리 전기추진선박의 국내 유람선 적용에 관한 연구)

  • Hwang, Jun-Young;Jeon, Cheol-Hwan;Jeon, Hyeon-Min;Kim, Jong-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.945-952
    • /
    • 2019
  • The International Maritime Organization (IMO) adopted the International Convention on the Control of Ships' Air Pollutants and Discharge as it became interested in environmental issues such as global warming and air pollution. In addition, a special bill on the improvement of air quality, including in port areas, has recently been enacted in Korea to reduce the amount of fine dust generated. As part of such fine dust reduction measures, feasibility studies have been underway on converting diesel engines into battery electric propulsion systems that do not cause fine dust and emissions. Since the battery electric propulsion system can easily utilize renewable energy sources, and does not generate exhaust gas due to combustion of fuel, small coastal ferries with battery electric propulsion systems that use renewable energy have been operating in Europe and the U.S. for several years. However, they have not been introduced in Korea. Therefore, in this study, we selected small coastal ferries in Korea as target ferries, and performed simulations to study the applicability of electric propulsion with batteries linked to solar power systems. Based on the results, we want to confirm the applicability of battery electric propulsion.

Electrochemical Characterization of Electrospun LaCoO3 Perovskite Nanofibers Prepared at Different Temperature for Oxygen Reduction and Evolution in Alkaline Solution (다양한 온도에서 합성한 전기방사 LaCoO3 페롭스카이트 나노섬유의 알칼리용액에서 산소환원 및 발생반응에 대한 전기화학 특성)

  • Lopez, Kareen J.;Sun, Ho-Jung;Park, Gyungse;Eom, Seungwook;Shim, Joongpyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.148-155
    • /
    • 2015
  • Electrospun $LaCoO_3$ perovskite nanofibers were produced for the air electrode in Zn-air rechargeable batteries using electrospinning technique with sequential calcination. The final calcination temperature was varied from 500 to $800^{\circ}C$ in order to determine its effect on the physical and electrochemical properties of the prepared $LaCoO_3$ perovskite nanofibers. The surface area of the electrospun $LaCoO_3$ perovskite nanofibers were observed to decrease with increasing final calcination temperature. Electrospun $LaCoO_3$ perovskite nanofibers calcined with final calcination temperature of $700^{\circ}C$ had the best electrocatalytic activity among the prepared perovskite nanofibers.

A Prospect of Battery Storage System in Korea (우리나라 전력시장 전자시스템의 전망)

  • Kim, Jae-Eon;Kim, H.Y.;Ko, Y.;Sohn, S.K.;Nam, K.Y.;Ko, Y.S.;Ro, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.251-253
    • /
    • 1989
  • The Battery Storage System (BSS) has been used in foreign country for Load Levelling, Flicker Compensation, Load Frequency Control, etc. because it has easy application characteristics compared to the other storage system such as the Pumped Hydro System, Compressed Air System, etc.. In this paper, the application field and available capacity of BSS is outlined in Korea.

  • PDF

New Synthetic Method of Perfluoro-Silanes for the Stable Electrolyte of Lithium Ion Battery Application

  • Koh, Kyungkuk;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.10 no.3
    • /
    • pp.171-174
    • /
    • 2017
  • Non-hydrolyzable fluorinated organosilicon compounds as an eletrolyte for the application of lithium-ion batteries (LIB) are synthesized. New synthetic method for the perfluorinated organosilicon compound containing spacer such as ethyl and propyl group with cyano moiety instead of ethylene glycol to prevent hydrolysis and to promote conductivity are developed in one pot reaction with moderately high yield. Air-sensitive boron trifluoride etherate is no longer required in this reaction. The products are characterized by spectroscopic analysis.

Development of ESS Based on VRFB-LFPB Hybrid Batteries (VRFB-LFPB 하이브리드 배터리 기반의 ESS 개발에 관한 연구)

  • Cheon, Young Sik;Park, Jin Soo;You, Jinho;Lee, Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.61-67
    • /
    • 2018
  • High-power lithium batteries are suitable for equipment with high power output needs, such as for ESS's initial start-up. However, their management cost is increased by the installation of air-conditioning to minimize the risk of explosion due to internal temperature rise and also by a restriction on the number of charge/discharge cycles. High-capacity flow batteries, on the other hand, have many advantages. They can be used for over 20 years due to their low management costs, resulting from no risk of explosion and a high number of charge/discharge cycles. In this paper, we propose an ESS based on hybrid batteries that uses a lithium iron phosphate battery (LiFePO) at the initial startup and a vanadium redox flow battery (VRFB) from the end of the transient period, with a bi-directional PCS to operate two batteries with different DC voltage levels and using an efficient energy management control algorithm.

Implementation of the CC/CV Charge of the Wireless Power Transfer System for Electric Vehicle Battery Charge Applications (전기 자동차 배터리 충전 애플리케이션을 위한 무선 전력 전송 시스템의 CC/CV 충전의 구현)

  • Vu, Van-Binh;Tran, Duc-Hung;Pham, Van-Long;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.25-26
    • /
    • 2015
  • Inductive Power Transfer (IPT) method becomes more and more popular for the Electric Vehicle (EV) battery charger due to its convenience and safety in comparison with plugged-in charger. In recent years, Lithium batteries are increasingly used in EVs and Constant Current/Constant Voltage (CC/CV) charge needs to be adopted for the high efficiency charge. However, it is not easy to design the IPT Battery Charger which can charge the battery with CC/CV charge under the wide range of load variation due to the wide range of variation in its operating frequency. This paper propose a new design and control method which makes it possible to implement the CC/CV mode charge with minimum frequency variation (less than 1kHz) during all over the charge process. A 6.6kW prototype charge has been implemented and 96.1% efficiency was achieved with 20cm air gap between the coils.

  • PDF