• Title/Summary/Keyword: Air atmosphere

Search Result 1,572, Processing Time 0.027 seconds

An Experimental Study on Real Time CO Concentration Measurement of Combustion Gas in LPG/Air Flame Using TDLAS (TDLAS를 이용한 LPG/공기 화염 연소가스의 실시간 CO 농도 측정에 관한 연구)

  • So, Sunghyun;Park, Daegeun;Park, Jiyeon;Song, Aran;Jeong, Nakwon;Yoo, Miyeon;Hwang, Jungho;Lee, Changyeop
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.316-323
    • /
    • 2019
  • In order to enhance combustion efficiency and reduce atmosphere pollutants, it is essential to measure carbon monoxide (CO) concentration precisely in combustion exhaust. CO is the important gas species regarding pollutant emission and incomplete combustion because it can trade off with NOx and increase rapidly when incomplete combustion occurs. In the case of a steel annealing system, CO is generated intentionally to maintain the deoxidation atmosphere. However, it is difficult to measure the CO concentration in a combustion environment in real-time, because of unsteady combustion reactions and harsh environment. Tunable Diode Laser Absorption Spectroscopy (TDLAS), which is an optical measurement method, is highly attractive for measuring the concentration of certain gas species, temperature, velocity, and pressure in a combustion environment. TDLAS has several advantages such as sensitive, non-invasive, and fast response, and in-situ measurement capability. In this study, a combustion system is designed to control the equivalence ratio. Also, the combustion exhaust gases are produced in a Liquefied Petroleum Gas (LPG)/air flame. Measurement of CO concentration according to the change of equivalence ratio is confirmed through TDLAS method and compared with the simulation based on Voigt function. In order to measure the CO concentration without interference from other combustion products, a near-infrared laser at 4300.6 cm-1 was selected.

Apoptosis and Development of Porcine Parthenogenetic Embryos Activated and Cultured in Different Condition (활성화 및 배양조건이 돼지 단위발생란의 발달 및 Apoptosis에 미치는 영향)

  • Hwang In-Sun;Seo Jin-Sung;Cheong Hee-Tae;Im Gi-Sun
    • Reproductive and Developmental Biology
    • /
    • v.30 no.1
    • /
    • pp.65-70
    • /
    • 2006
  • This study investigated apoptosis and in vitro development of parthenogenetic preimplantation porcine embryos. In vitro matured oocytes for $42{\sim}44h$ were used. Apoptotic cell death was analyzed by using a terminal deoxynucleatidyl transferase mediated deoxyuridine 5-triphosphate nick-end tabling (TUNEL) assay. In experiment 1, oocytes were activated with two electric pulses (CH) of 1.2 kV/cm for $30{\mu}sec$ (E), E + 6-dimethylaminopurine (6-DMAP) or E + cycloheximide (CH) and cultured in PZM-3 under 5% $CO_2$ in air at $38.5^{\circ}C$. In experiment 2, oocytes were activated by E and cultured in PZM-3 or NCSU-23 under a gas atmosphere of 20% $O_2$ ($5%\;CO_2$, in air) or 5% $O_2$ $(5%\;CO_2,\;5%\;O_2\;90%\;N_2)\;at\;38.5^{\circ}C$. Oocytes activated with E+6-DMAP or E+CH showed higher blastocyst rates (36.3% and 32.5%) compared to E alone (27.7%). The frequency of apoptosis according to treatments were 5.3%, 7.7% and 7.1% respectively. Oocytes activated with E alone showed lower (P<0.05) frequency of apoptosis compared to other groups. In experiment 2, parthenotes cultured in PZM-3 showed slightly higher blastocyte rates (28.2% and 29.7%) compared to NCSU-23 (22.6% and 24.4%) regardless of atmosphere. Blastocysts generated in PZM-3 showed lower (P<0.05) apoptosis rate under 20% $O_2$ (9.2% vs 16.9%), whereas those in NCSU-23 had slightly lower apoptosis rate under 5% $O_2$ (14.0% vs 18.4%). This result represents that activation method and culture condition could affect the frequency of apoptosis as well as in vitro developmental rate.

The NCAM Land-Atmosphere Modeling Package (LAMP) Version 1: Implementation and Evaluation (국가농림기상센터 지면대기모델링패키지(NCAM-LAMP) 버전 1: 구축 및 평가)

  • Lee, Seung-Jae;Song, Jiae;Kim, Yu-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.307-319
    • /
    • 2016
  • A Land-Atmosphere Modeling Package (LAMP) for supporting agricultural and forest management was developed at the National Center for AgroMeteorology (NCAM). The package is comprised of two components; one is the Weather Research and Forecasting modeling system (WRF) coupled with Noah-Multiparameterization options (Noah-MP) Land Surface Model (LSM) and the other is an offline one-dimensional LSM. The objective of this paper is to briefly describe the two components of the NCAM-LAMP and to evaluate their initial performance. The coupled WRF/Noah-MP system is configured with a parent domain over East Asia and three nested domains with a finest horizontal grid size of 810 m. The innermost domain covers two Gwangneung deciduous and coniferous KoFlux sites (GDK and GCK). The model is integrated for about 8 days with the initial and boundary conditions taken from the National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) data. The verification variables are 2-m air temperature, 10-m wind, 2-m humidity, and surface precipitation for the WRF/Noah-MP coupled system. Skill scores are calculated for each domain and two dynamic vegetation options using the difference between the observed data from the Korea Meteorological Administration (KMA) and the simulated data from the WRF/Noah-MP coupled system. The accuracy of precipitation simulation is examined using a contingency table that is made up of the Probability of Detection (POD) and the Equitable Threat Score (ETS). The standalone LSM simulation is conducted for one year with the original settings and is compared with the KoFlux site observation for net radiation, sensible heat flux, latent heat flux, and soil moisture variables. According to results, the innermost domain (810 m resolution) among all domains showed the minimum root mean square error for 2-m air temperature, 10-m wind, and 2-m humidity. Turning on the dynamic vegetation had a tendency of reducing 10-m wind simulation errors in all domains. The first nested domain (7,290 m resolution) showed the highest precipitation score, but showed little advantage compared with using the dynamic vegetation. On the other hand, the offline one-dimensional Noah-MP LSM simulation captured the site observed pattern and magnitude of radiative fluxes and soil moisture, and it left room for further improvement through supplementing the model input of leaf area index and finding a proper combination of model physics.

Chemical Characteristics of Heavy Metals of PM2.5 in Atmosphere (대기 중 PM2.5의 중금속 성분의 화학적 특성)

  • Jeon, Hye-Li;Choi, Su-Hyeon;Im, Ji-Young;Park, Hee-Jin;Hong, Eun-Ju;Son, Bu-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.3
    • /
    • pp.233-240
    • /
    • 2012
  • Objectives: The changes in atmospheric $PM_{2.5}$ concentrations were extensively studied in one metropolitan city (Incheon), two small and medium sized cities (Gunsan, Cheonan), and a rural area (Gosan in Jeju). The concentrations of heavy metals (Cr, Mn, Fe, Ni, Cu, Zn, Al, Pb) and the component features of $PM_{2.5}$ were determined for these areas. Methods: This study sampled $PM_{2.5}$ at the designated locations in the metropolitan (Incheon), small and medium sized cities (Gunsan in Jeonbuk and Cheonan in Chungnam), and rural area (Gosan in Jeju) to investigate concentrations with a sampling device (Sequential sampler, APM Eng., Korea). Sampling was undertaken over months, from June 26 to November 26, 2009. Sampling was conducted a total of 44 times, with routine sampling at intervals of six days (24 total times) and intensive sampling (20 total times) during the summer and fall. Mass concentration of $PM_{2.5}$ was evaluated and the concentrations of heavy metals (Cr, Mn, Fe, Ni, Cu, Zn, Al, Pb) were analyzed. Results: The geometric average of concentrations of $PM_{2.5}$ per district was $35.289{\mu}g/m^3$ for Cheonan, $29.955{\mu}g/m^3$ for Incheon, $24.119{\mu}g/m^3$ for Gunsan, and $18.773{\mu}g/m^3$ for Jeju, respectively. The average concentration of $PM_{2.5}$ in Cheonan was the highest. The seasonal concentration distributions per district showed Cheonan $33.387{\mu}g/m^3$, Incheon at $31.550{\mu}g/m^3$, Gunsan $22.900{\mu}g/m^3$, and Jeju $18.900{\mu}g/m^3$ in the summer. For the autumn, the concentrations were $36.873{\mu}g/m^3$ in Cheonan, $28.625{\mu}g/m^3$ in Incheon, $25.227{\mu}g/m^3$ in Gunsan, and $18.667{\mu}g/m^3$ in Jeju. According to the collected data, the concentration showed a tendency to rise during the autumn in all of these regions with the exception of Incheon. For heavy metal distribution per district, Fe showed an elevated concentration during the summer while high concentrations of Pb and Zn occurred during the autumn. Conclusion: These results demonstrated that atmospheric factors affected the concentrations of heavy metals. The results of this study could be used as foundational data for setting environmental air standards focusing on a $PM_{2.5}$ receptor.

Inter-comparison of Two Aethalometers for Aerosol Black Carbon Measurements (대기 에어로졸 검댕입자 측정을 위한 두 aethalometer의 상호비교)

  • Jung, Jung-Hoon;Park, Seung-Shik;Yoon, Kwan-Hoon;Cho, Sung-Yong;Kim, Seung-Jai
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.2
    • /
    • pp.201-208
    • /
    • 2011
  • Recently, a real-time, pocket-sized aethalometer (microAeth$^{(R)}$ model AE51) has been developed by Magee Scientific Inc. for measuring the concentration of black carbon in the atmosphere. In this study, two aethalometers, models AE-16 and AE-51, which measure the optical absorption of carbon particles at infrared 880 nm, were operated at time interval of 5-min between January 9 and February 10, 2010 at an urban site of Gwangju, to compare the accuracy of black carbon (BC) concentrations reported from the AE-51 model and to investigate reasonable sampling time of filter media in the AE-51. The air samples in the AE-51 and AE-16 models are collected on T60 (Teflon coated glass fiber) filter media (filter spot area: 0.07 $cm^2$) and quartz fiber roll-tape filter (filter spot area: 1.67 $cm^2$), respectively. Real-time measurement results indicate that when the filters were clean, the AE-51 BC was greater than or similar to the AE-16 BC data. However as the filter spots become darker, the AE-16 BC concentrations were higher than the AE-51 BC data and the difference in the BC concentrations from two AE models becomes gradually increased. Relative error in the AE-51 and AE-16 BC concentrations showed significance difference depending on used time of the filter in the AE-51 model, weather pattern, levels of air pollution, etc, ranging from 11.5% (used time of the filter in AE-51: 1,595 min) to 52.5% (used time of the filter in AE-51: 2,085 min). When considering the used time of one filter ticket in the AE-51 model and difference (or relative error %) between AE-16 and AE-51 BC concentrations, it is recommended that the standard sampling time per one filter ticket within the AE-51 model be less than approximately 24 hr (1,440 min) under the normal weather conditions except for severe haze and mist events.

Estimation of Fire Emissions Using Fire Radiative Power (FRP) Retrieved from Himawari-8 Satellite (히마와리 위성의 산불방사열에너지 자료를 이용한 산불배출가스 추정: 2017년 삼척 및 강릉 산불을 사례로)

  • Kim, Deasun;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.1029-1040
    • /
    • 2017
  • Wildfires release a large amount of greenhouse gases (GHGs) into the atmosphere. Fire radiative power (FRP) data obtained from geostationary satellites can play an important role for tracing the GHGs. This paper describes an estimation of the Himawari-8 FRP and fire emissions for Samcheock and Gangnueng wildfire in 6 May 2017. The FRP estimated using Himawari-8 well represented the temporal variability of the fire intensity, which cannot be captured by MODIS (Moderate Resolution Imaging Spectroradiometer) because of its limited temporal resolution. Fire emissions calculated from the Himwari-8 FRP showed a very similar time-series pattern compared with the AirKorea observations, but 1 to 3 hour's time-lag existed because of the distance between the station and the wildfire location. The estimated emissions were also compared with those of a previous study which analyzed fire damages using high-resolution images. They almost coincided with 12% difference for Samcheock and 2% difference for Gangneung, demonstrating a reliability of the estimation of fire emissions using our Himawari-8 FRP without high-resolution images. This study can be a reference for estimating fire emissions using the current and forthcoming geostationary satellites in East Asia and can contribute to improving accuracy of meteorological products such as AOD (aerosol optical depth).

Evaluation of NOx Removal Efficiency of Photocatalytic Concrete for Road Structure (도로구조물 적용을 위한 광촉매 콘크리트의 질소산화물(NOx) 제거효율 평가)

  • Kim, Young Kyu;Hong, Seong Jae;Lee, Kyung Bae;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.49-58
    • /
    • 2014
  • PURPOSES : In areas of high traffic volume, such as expressway across large cities, the amount of nitrogen oxides (NOx) emitted into the atmosphere as air pollution can be significant since NOx gases are the major cause of smog and acid rain. Recently, the importance of NOx removal has arisen in the world. Titanium dioxide ($TiO_2$), that is one of photocatalytic reaction material, is very efficient for removing NOx. The NOx removing mechanism of $TiO_2$ is the reaction of solar photocatalysis. Therefore, $TiO_2$ in road structure concrete need to be contacted with ultraviolet rays (UV) to be activated. In general, $TiO_2$ concretes are produced by replacement of $TiO_2$ as a part of concrete binder. However, considerable portion of $TiO_2$ in concrete cannot contact with the pollutant in the air and UV. Therefore, $TiO_2$ penetration method using the surface penetration agents is attempted as an alternative in order to locate $TiO_2$ to the surface of concrete structure. METHODS : This study aimed to evaluate the NOx removal efficiency of photocatalytic concrete due to various $TiO_2$ application method such as mix with $TiO_2$, surface spray($TiO_2$ penetration method) on hardened concrete and fresh concrete using surface penetration agents. The NOx removal efficiency of $TiO_2$ concrete was confirmed by NOx Analyzing System based on the specification of ISO 22197-1. RESULTS : The NOx removal efficiency of mix with $TiO_2$ increased from 11 to 25% with increasing of replacement ratio from 3 to 7%. In case of surface spray on hardened concrete, the NOx removal efficiency was about 50% due to application amount of $TiO_2$ with surface penetration agents as 300, 500 and 700g/m2. The NOx removal efficiency of surface spray on fresh concrete due to all experimental conditions, on the other hand, which was very low within 10%. CONCLUSIONS : It was known that the $TiO_2$ penetration method as surface spray on hardened concrete was a good alternative in order to remove the NOx gases for concrete road structures.

A Consideration on the Electromagnetic Properties of Road Pavement Using Ground Penetrating Radar (GPR) (지표투과레이더(GPR)에 의한 도로포장의 전자기적 특성값 고찰)

  • Rhee, Jiyoung;Shim, Jaewon;Lee, Sangrae;Lee, Kang-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.285-294
    • /
    • 2020
  • This study investigated the use of Ground Penetrating Radar (GPR) over a two-decade period on public roads, focusing on the electromagnetic characteristics of the pavement dielectrics and attenuation. From the results, a typical range of characteristic value, influencing factors, and a correction method were suggested. The typical dielectrics of asphalt pavements were 4-7, as measured by an air-coupled 1 GHz GPR antenna. The dielectrics of concrete pavements were very large in the early age, but were drastically reduced with ageing. Ten years on, collection was in the range of 6-12. The dielectrics were proportional to the relative humidity (R.H.) of the atmosphere. The effects were reduced to one eighth with an overlay. Attenuation generally increased with thickness of the road layer, and also increased where there was damage. The GPR results could also vary depending on the weather conditions as well as on the characteristics of the GPR equipment, even at the same frequency. Therefore, GPR surveys should be performed on road surfaces without debris on a single, fine day. The reliability of the GPR analysis could be improved by cores and equipment calibration with other non-destructive test surveys.

High Loading for Air Pollution in the Byunsan Peninsula of Korea by an Interplay of the Saemangeum Project and Winter Monsoon

  • Ma, Chang-Jin;Kang, Gong-Unn;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.3
    • /
    • pp.234-243
    • /
    • 2012
  • The wintertime high loading for atmospheric pollutants is certainly expected in the Byunsan Peninsula of Korea because of a great-scale reclamation project having construction of 33 km tidal sea dike impounding an area of over 40,000 ha and long-range transport. The goal of this study is to trace the origin of this wintertime burden for ambient particulate matter (hereafter called "PM") in the Byunsan Peninsula of Korea. The size-segregated (i.e., cutoff size from 0.01 ${\mu}m$ to 4.7 ${\mu}m$) PM sampling was conducted at a ground-based site of Byunsan Peninsula located in the west coast of Korean Peninsula during the height of dike constructing. Data archived in this study are the mass concentrations of ionic, elemental, and carbonic components in size-fractioned PM. The elemental mass of individual submicrometer particles was also analyzed. The sum of 5-source (i.e., elemental carbon, organic materials, inorganic secondary pollutants, crustal matter, and sea-salts) concentrations shows the bimodal distribution (major and minor peaks formed around $D_p$, 0.65 ${\mu}m$ and $D_p$, 4.7 ${\mu}m$, respectively) by border with 0.19 ${\mu}m$ of cutoff size. The concentrations of EC in $PM_{1.1-0.01}$ in winter and spring times were 4.62 ${\mu}g\;m^{-3}$ and 3.74 ${\mu}g\;m^{-3}$, respectively. Elemental masses of submicron individual particles are classified into two groups, i.e., the major elements (Cl, Al, Si, S, and P) and the minor trace elements. Cluster analysis differentiated the elements in submicron individual particles into 4-cluster. Among them, three clusters are in agreement with the major (Al, Si, S, and P), minor (Fe, Ca, and K), and trace compositions of coal burning. Meanwhile, Cl classified as an independent cluster has different source profile which was mainly due to the Saemangeum seawall project. Some highly toxic elements (e.g., Cr, Mn, and As (and/or Pb)) were also detected in some part of submicron individual PM. As a consequence, the combination of the Saemangeum project and winter monsoon played a considerable part in the double aggravation of wintertime air pollution in the Byunsan Peninsular.

Atmospheric correction by Spectral Shape Matching Method (SSMM): Accounting for horizontal inhomogeneity of the atmosphere

  • Shanmugam Palanisamy;Ahn Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.341-343
    • /
    • 2006
  • The current spectral shape matching method (SSMM), developed by Ahn and Shanmugam (2004), relies on the assumption that the path radiance resulting from scattered photons due to air molecules and aerosols and possibly direct-reflected light from the air-sea interface is spatially homogeneous over the sub-scene of interest, enabling the retrieval of water-leaving radiances ($L_w$) from the satellite ocean color image data. This assumption remains valid for the clear atmospheric conditions, but when the distribution of aerosol loadings varies dramatically the above postulation of spatial homogeneity will be violated. In this study, we present the second version of SSMM which will take into account the horizontal variations of aerosol loading in the correction of atmospheric effects in SeaWiFS ocean color image data. The new version includes models for the correction of the effects of aerosols and Raleigh particles and a method fur computation of diffuse transmittance ($t_{os}$) as similar to SeaWiFS. We tested this method over the different optical environments and compared its effectiveness with the results of standard atmospheric correction (SAC) algorithm (Gordon and Wang, 1994) and those from in-situ observations. Findings revealed that the SAC algorithm appeared to distort the spectral shape of water-leaving radiance spectra in suspended sediments (SS) and algal bloom dominated-areas and frequently yielded underestimated or often negative values in the lower green and blue part of the electromagnetic spectrum. Retrieval of water-leaving radiances in coastal waters with very high sediments, for instance = > 8g $m^{-3}$, was not possible with the SAC algorithm. As the current SAC algorithm does not include models for the Asian aerosols, the water-leaving radiances over the aerosol-dominated areas could not be retrieved from the image and large errors often resulted from an inappropriate extrapolation of the estimated aerosol radiance from two IR bands to visible spectrum. In contrast to the above results, the new SSMM enabled accurate retrieval of water-leaving radiances in a various range of turbid waters with SS concentrations from 1 to 100 g $m^{-3}$ that closely matched with those from the in-situ observations. Regardless of the spectral band, the RMS error deviation was minimum of 0.003 and maximum of 0.46, in contrast with those of 0.26 and 0.81, respectively, for SAC algorithm. The new SSMM also remove all aerosol effects excluding areas for which the signal-to-noise ratio is much lower than the water signal.

  • PDF