• Title/Summary/Keyword: Air Supply System

Search Result 881, Processing Time 0.034 seconds

A Study on the District Community Cooling System using LNG Cold Energy (LNG 냉열이용 지역집단 냉방시스템에 대한 연구)

  • Kim, Chung-Kyun;Kim, Seung-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.6
    • /
    • pp.27-30
    • /
    • 2010
  • This paper presents the system design process of district community cooling system using LNG cold energy. The newly developed LNG cooling system includes several heat exchangers, LNG storage tank, thermal mass storage tank, several cold energy storage tanks, gas air-conditioners, compressors, constant pressure regulators, cold energy and hot energy supply pipes. In addition, the gas air-conditioner system is installed to supply not sufficient cold energy due to low level of city gas consumptions during a summer period. This system design is very effective and safe to supply cold energy mass of fresh air by exchanging two thermal masses of an air and 200kcal/kg cold energy of LNG. The district community cooling system with LNG cold energy does not produce CO2 and freon gases in the air.

Auxiliary Power Supply using Photovoltaic Power Generation for Air-Conditioner (태양광발전을 이용한 에어콘의 보조운전 제어 시스템)

  • 황인호;유권종;송진수;이후기;정찬규
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.05a
    • /
    • pp.47-52
    • /
    • 1993
  • Recently, as exactly clean source, the research of photovoltaic power generation is undertaken actively and widely. In this paper, an auxiliary power supply system which is composed of photovoltaic generation and DC-DC boost chopper is described. This system in mainly for Air-conditioner appliances is which AC source is formed through rectifying circuit and without electrical storage battery. There exist two operating modes depending on the power quantity of the solar cells and the load. The control algorithm is discussed.

  • PDF

Development of Three-Way Proportional Control Valve and Performance Study (3방 비례제어 조절밸브 개발 및 성능 연구)

  • Lee, Jonghwa;Jung, Taeksu;Cho, Chongdu;Kim, Jooyong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.5
    • /
    • pp.218-223
    • /
    • 2014
  • Korea District heating corp. recently give an attention to combine the district heating and supply pipes as a two pipe system that are in the present system separated with room heating and warm water supply pipe, and the two pipe system is commonly applied for heating service in European countries. In the new two pipe system, only one heat source is supplied to a house and partitioned into room heating and warm water supply by household substation. So the effective distribution of supplied heat source in accordance to user intention is very important. This paper presents the development and performance test of three-way proportional control valve for a combined heat source system in district heating. The proposed valve is controlled to partition heat source into two different directions : hot water distributor for space heating and household substation for warm water supply in response to the pressure drops of tap water caused by the user. The performance investigation is shown within 3% of error compared to the theoretical model of the three-way proportional valve and its controllability is verified.

A study on the Improvement of Ventilation Performance in Apartment House According to the Location of Exterior Air-Vents (공동주택에서의 실외 급.배기구 위치에 따른 환기효율 향상 연구)

  • Park, Jin-Chul;Yu, Hyung-Kyu;Cha, Jin-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.2
    • /
    • pp.71-79
    • /
    • 2005
  • In this study, the ventilation performance of mechanical ventilation system in apartment House was analyzed through model test according to characteristics of air-vent. Then adequate interval of air-vent was suggested using computer simulation which will create comfort environment through improvement of ventilation performance in apartment house. The result of experiment with separation plate to prevent mixture of contaminated exhaust air with fresh supply air, the ventilation efficiency improved about 10%. The result of simulation with horizontal location of exterior air-vent, contaminated exhaust air is mixed regardless of interval variation. Consequently, mixture of the exhaust air can be prevented through locating the supply air vent on the top side and exhaust air vent on the lower side.

An Experimental Study of Ventilation Effectiveness in Mechanical Ventilation systems using a Tracer Gas Method

  • Lee, Jae keun;Kang, Tae-Wook;Lee, Kam-Gyu;Cho, Min-Chul;Shin, Jin-Hyuk;Kim, Seong-Chan;Koo, Jeong-Hwan;Lee, Jong ho
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1286-1295
    • /
    • 2000
  • The ventilation effectiveness is evaluated as a function of air exchange rate and supply / extract locations in a simplified model chamber using a tracer gas technique of CO$_2$ gas injected into a supply duct. Ventilation systems consist of supply and extract fans, a CO$_2$gas generator, a CO$_2$gas analyzer and a test chamber. The ventilation effectiveness is evaluated using a step-down method based on ASTM Standard E741-83. The room mean age of the model chamber is decreased with increasing air exchange rate fanged from 6to 10 air changes per hour. The ventilation effectiveness of the mechanical inlet/natural extract system is better than that of the mechanical extract system.

  • PDF

New Suction Mechanism Using Permanent Magnet (영구자석을 이용한 새로운 Suction Mechanism)

  • Seo, Sung-Keun;Lee, Seung-Hee;Park, Jong-Hyeon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.962-966
    • /
    • 2004
  • Suction transfer system with air suctioning is widely used and continuously developed in production automation. Air suctioning has some drawbacks in use. To generate vacuum in the suction cup with air suctioning, complex of mechanical component like as air compressor, air tube, air value is need, and it needs continuous air supply. And if the failure of the suction in a cup in the multi-suction cup system which is generally used occurs then the suctions of all of the cup will be fail. To overcome these drawbacks, new suction mechanism which uses permanent magnet for the movement of the suction cup is proposed. The proposed mechanism activates each suction cup separately, so the air leakage of a cup is not critical. The proposed suction system wasdesigned and fabricated in real world. With some experiments, the usability and performance of the suction mechanism was proved. The strong points of the proposed suction mechanism are simple structure, high energy efficiency, and discrete energy supply.

  • PDF

A Study for Energy Separation of Vortex Tube using Air Supply System (I) - the effect of diameter of cold end orifice - (공기공급 시스템에 적용되는 Vortex Tube의 에너지 분리특성에 관한 연구(I) -저온출구 orifice의 직경변화에 의한 영향-)

  • 이병화;추홍록;상희선
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.9-18
    • /
    • 1998
  • The vortex tube is a simple device for separating a compressed gaseous fluid stream into two flows of high and low temperature without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air supply system. The phenomena of energy separation through the vortex tube was investigated experimentally. This study is focused on the effect of the diameter of cold end orifice diameter on the energy separation. The experiment was carried out with various cold end orifice diameter ratio from 0.22 to 0.78 for different input pressure and cold air flow ratio. The experimental results were indicated that there are an optimum diameter of cold end orifice for the best cooling performance. The maximum cold air temperature difference was appeared when the diameter ratio of the cold end orifice was 0.5. The maximum cooling capacity was obtained when the diameter ratio of the cold end orifice was 0.6 and cold air flow ratio was 0.7.

  • PDF

A Study for Energy Separation of Vortex Tube Using Air Supply System(II) - the effect of surface insulation - (공기공급 시스템에 적응되는 Vortex Tube의 에너지 분리특성에 관한 연구(II) -표면의 단열효과에 따른 영향-)

  • 방창훈;추홍록;유갑종
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.3-9
    • /
    • 1999
  • The vortex tube is a simple device which splits a compressed gas stream into a cold stream and a hot stream without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air supply system. In this study, the insulation effect of surface on the efficiency of vortex tube was performed experimentally. The experiment is carried out for nozzle area ratio of 0.194, diameter ratio of cold end orifice of 0.6 and input pressure ranging from 0.2Mpa to 0.5Mpa. The purpose of this study is focused on the effect of surface insulation of vortex tube with the variation of cold air mass flow ratio. The results indicate that the temperature difference of cold and hot air are higher about 12% and 30% than that of not insulated vortex tube respectively. Furthermore, for the insulated vortex tube, the similarity relation for the prediction of cold end temperature as the function of cold air mass flow ratio and input pressure is obtained.

  • PDF

Experimental Study on the Indoor Thermal Characteristics for Floor Radiant Heating System (바닥복사 난방시스템의 실내 열환경 특성에 대한 실험적 연구)

  • Song, Jae-Yeob;Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.3
    • /
    • pp.1-12
    • /
    • 2021
  • In this study, the effects of various operational conditions for floor radiant heating system were researched by experiments. Hot water supply set temperature, indoor air set temperature and supply water flowrate were considered as operational conditions. The control method for this system is On-Off control of automatic thermostatic valve. The purpose of this study is to evaluate indoor thermal control characteristics and energy performance, respectively. As a result, if lower supply water temperature is applied, the supply and return temperature difference is reduced and energy consumption of heat supply is also reduced.

Boiler Supply Water Temperature Setting by Outside Air Temperature and Return Water Temperature (외기온도와 환수온도를 이용한 보일러의 공급수온도설정)

  • Han, Do-Young;Yoo, Byeong-Kang
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.161-166
    • /
    • 2009
  • Condensing gas boiler units may make a big role for the reduction of energy consumption in heating industries. In order to decrease the energy consumption of a boiler unit, the effective operation is necessary. In this study, the supply water temperature algorithm of a condensing gas boiler was developed. This includes the setpoint algorithm and the control algorithm of the supply water temperature. The setpoint algorithm was developed by the fuzzy logic and the control algorithm was developed by the proportional integral algorithm. In order to analyse the performance of the supply water temperature algorithm, the dynamic model of a condensing gas boiler system was used. Simulation results showed that the supply water temperature algorithm developed for this study may be practically applied for the control of the condensing gas boiler.

  • PDF