• Title/Summary/Keyword: Air Pollution Index

Search Result 134, Processing Time 0.026 seconds

Estimation of Source Contribution by Air Pollutant Type (Point, Area, Line) over Seoul Metropolitan Area (수도권지역에서 오염원별 대기오염농도 기여도 평가)

  • Park, Il-Soo;Lee, Suk-Jo;Kim, Jong-Choon;Kim, Sang-Kyun;Lee, Dong-Won;Yoo, Chul;Lee, Jae-Bum;Song, Hyung-Do;Lee, Jung-Young;Kim, Ji-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.5
    • /
    • pp.495-505
    • /
    • 2005
  • This study is to estimate source contribution by air pollutantion types (point, area, line) over Seoul metropolitan area. The Air Pollution Model (TAPM) and the highly resolved anthropogenic and biogenic gridded emissions ($1km{\times}1km$) were applied to simulate $SO_2,\;NO_2,\;O_3\;and\;PM_{10}$ concentrations by seasons and contribution was estimated by their source types (point, area, line). The results showed that the simulated concentrations of secondary pollutant agreed well with observed values with an index of agreement (IOA) over 0.4, whereas IOAs over 0.3 were observed for most primary pollutants. The contributions of each source types by seasons were similar. The point source contribution was the highest for $SO_2$ at medium level ranged from $55.1\%\;to\;61.5\%$. But the contribution from area source during for the spring and summer increased as the concentration level increased. The line source contribution was the highest for $NO_2$ at all levels ranged from $68.3\%\;to\;93.1\%$. The results indicate that $SO_2$ emissions should be mainly controlled from point source, as well as area source at higher level concentration. Also, $NO_2\;and\;PM_{10}$ to from line source should be controlled.

Effects of Physical Factors on Urban Surfaces on Air Quality - Chang Chun, China as an Example - (도시표면의 물리적 요소가 대기질에 미치는 영향 - 중국 창춘을 사례로 -)

  • Jin, Quanping;Kim, Tae Kyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.5
    • /
    • pp.1-11
    • /
    • 2021
  • The purpose of this study is to find out the main factors affecting air quality in urban physical space factors, and provide clues for environmental improvement. Nine monitoring stations in China's industrial city, Changchun, collected AQI concentration data from January 1, 2018 to December 31, 2019. This paper analyzes the types and distribution characteristics of urban physical facilities within a radius of 300m with the detection station as the center. The monitoring station is divided into three groups, and the difference in floating dust concentration among the three groups in different seasons is analyzed. The results show that AQI concentration is the highest in spring and winter, followed by summer, and the lowest in autumn. The place with the highest concentrations of AQI in spring are F (93.00), D (91.10), I (89.20), in summer are D (69.05), A (67.89), B (84.44), in autumn are I (62.80), G (60.84), D (53.27), D (53.27), in winter are I (95.82), H (95.60), f (94.04). Through SPSS analysis, it shows that the air index in a space with a diameter of 600 meters is related to forest land, grassland, bare land, water space, tree height, building area (average value), and building volume (average value). According to the statistical analysis results of spring and winter with the most serious pollution, forest land area (43,637m2, 15.44%) and water surface area (18,736m2, 6.63%) accounted for the majority, and group 1 (A, B, C) with the least average building area (448m2, 0.17%) and average building volume (10,201m2) had the lowest pollution concentration. On the contrary, group 2 (D, E, F) had the highest AQI concentration, with less or no woodland (1,917m2, 0.68%) and water surface area (0m2, 0%), and the highest average building area (1,056m2, 0.37%) and average building volume (17,470m3). It is confirmed that the characteristics of the area with the highest AQI concentration are that the more the site ratio of tree height above 12m, the smaller the site ratio of bare land, and the lower the pollution degree. On the contrary, the larger the area of bare land, the higher the pollution degree. By analyzing the characteristics of nine monitoring stations in Changchun, it can be seen that the air quality brought by the physical characteristics of urban space is closely related to the above factors.

Numerical Investigation of Low-pollution Combustion with applying Flue Gas Recirculation in Counterflow Flames: Part II. Analysis of NOx formation mechanism (대향류 화염에서 FGR이 적용된 저공해 연소의 수치적 해석: Part II. NOx 생성기구 분석)

  • Cho, Seo-Hee;Kim, Gyeong-Mo;Lee, Kee-Man
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.39-47
    • /
    • 2020
  • Flue gas recirculation(FGR) is an effective combustion technique for reducing nitrogen oxides(NOx) and is applied in various fields of low-pollution combustion. Continuing the previous study, a numerical analysis was conducted to identify changes of flame characteristics and NOx formation mechanism with applying FGR technique in CH4/air premixed counterflow flames. NOx emitted was divided into four main reaction paths(thermal NO, prompt NO, N2H and N2O), showing relatively the production rate of NO with the recirculation ratio. As a result, thermal NO contributed greatly to the overall NO whereas the effect of N2H was minimal. In addition, emission index of NO was compared as the recirculation ratio increased by modifying the UC San Diego mechanism to examine the contribution of thermal NO.

Effects of Fine Particles on Pulmonary Function of Elementary School Children in Ulsan (미세먼지가 울산지역 초등학생의 폐기능에 미치는 영향)

  • Yu, Seung-Do;Cha, Jung-Hoon;Kim, Dae-Seon;Lee, Jong-Tae
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.5
    • /
    • pp.365-371
    • /
    • 2007
  • To evaluate the effect of air pollution on respiratory health in children, We conducted a longitudinal study in which children were asked to record their daily levels of Peak Expiratory Flow Rate(PEFR) using potable peak flow meter(mini-Wright) for 4 weeks. The relationship between daily PEFR and ambient air particle levels was analyzed using a mixed linear regression models including gender, age in year, weight, the presence of respiratory symptoms, and relative humidity as an extraneous variable. The daily mean concentrations of $PM_{10}$ and $PM_{2.5}$ over the study period were $64.9{\mu}g/m^3$ and $46.1{\mu}g/m^3$, respectively. The range of daily measured PEFR in this study was $182{\sim}481\;l/min$. Daily mean PEFR was regressed with the 24-hour average $PM_{10}(or\;PM_{2.5})$ levels, weather information such as air temperature and relative humidity, and individual characteristics including sex, weight, and respiratory symptoms. The analysis showed that the increase of air particle concentrations was negatively associated with the variability in PEFR. We estimated that the IQR increment of $PM_{10}$ or $PM_{2.5}$ were associated with 1.5 l/min (95% Confidence intervals -3.1, 0.1) and 0.8 l/min(95% CI -1.8, 0.1) decline in PEFR. Even though this study showed negative findings on the relationship between respiratory function and air particles, it was worth noting that the findings must be interpreted cautiously because exposure measurement based on monitoring of ambient air likely resulted in misclassification of true exposure levels and this was the first Korean study that $PM_{2.5}$ measurement was applied as an index of air quality.

Analysis of Changes in the Land Surface Temperature according to Tree Planting Campaign to reduce Urban Heat Island - A Case Study for Gumi, South Korea - (도시열섬 완화를 위한 나무심기운동에 따른 지표면 온도 변화 분석 - 구미시를 사례로 -)

  • KIM, Kyunghun;KIM, Hung Soo;KWON, Yong-Ha;PARK, Insun;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.1
    • /
    • pp.16-27
    • /
    • 2022
  • Due to climate change, temperature is rising worldwide. Since rapid growth has been achieved focused on cities, South Korea is experiencing serious environmental problems such as heat island and air pollution in urban areas. To solve this problem, the central and each local government are actively promoting tree planting campaigns. This study quantitatively calculated changes in green areas and vegetation of Gumi by the tree planting campaign, and analyzed the temperature changes accordingly. For the target area, the green area, vegetation index, and ground temperature were calculated for 4 different time periods using the given Landsat satellite images. As a result of the study, the green area of was increased by 7.24km2 and 4.93km2 for two regions, respectively. Accordingly, the vegetation index increased by 0.14 to 0.16, and the temperature decreased by 0.8 to 1.2℃. The Tree planting campaign not only plays a role in lowering the temperature of the city but also does various roles such as air purification, carbon absorption, and providing green rest areas to citizens. Therefore the campaign should be carried out continuously.

Meteorological Mechanisms Associated with Long-range Transport of Asian Dust Observed at the West Coast of North America in April 2001

  • Song Sang-Keun;Kim Yoo-Keun;Moon Yun-Seob
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.E1
    • /
    • pp.1-14
    • /
    • 2004
  • Meteorological mechanisms in association with long-range transport of Asian dust in April 2001 have been investigated using weather maps, satellite images, TOMS and surface $PM_{10}$ data, backward trajectories, plus modeling output results (geopotential heights, horizontal wind vectors, potential temperatures, and streamlines). The results indicated that long -range transport of Asian dust to the west coast of North America was associated with strong westerlies between the Aleutian low and the Pacific high acting as a conveyor belt. Accelerating westerly flows due to cyclogenesis at the source regions over East Asia transported pollution from the continent to the central Pacific. When the system reached the Aleutian Islands, the intensity of troughs and the westerlies were amplified in the North Pacific. Thereafter the winds between the Aleutian Islands and the Pacific Ocean were more intensified from the air flow transport of the conveyor belt. Consequently, the strong wind in the conveyor belt enhanced the dust transport from the Pacific Ocean to the west coast of North America. This was evidenced by $PM_{10}$ concentration (maximum of about $100{\mu}g\;m^{-3}$) observed In California. Further evidence of the dust transport was found through the observation of satellite images, the distribution of TOMS aerosol index, and the analyses of streamlines and backward trajectories.

The Analysis on the VOCs Contents and Ozone Production Contribution of A Marine Paint in Korea (국내 선박용 도료의 VOCs 함량분포 및 오존생성기여도에 관한 연구)

  • Kim, Su Min;Lee, Young Soo;Kang, Kyoung Hee;Yoo, Kyung Seun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.6
    • /
    • pp.569-576
    • /
    • 2014
  • In this research, a few paints in the shipyard were selected and analyzed for the component and ozone production in marine paint using TVOC and GC/FID, ozone generation index (MIR, POCP) to establish measures of $VOC_s$ effectively. The concentrations of TVOC ranged between approximately 300~400 g/L and 400~500 g/L, respectively and these showed 37% of whole. Our results indicated that the main constituents of marine paints were m,p,oxylene (49%), ethyl benzene (10%), toluene (8%) and 2-propanol (5%). It was also found that xylene concentration have relatively higher impact on ozone generation. The types of paints were also investigated for their potentials. The biggest contributor was the 1 Pack Finish paint. The rest is, in their contributing order, 1 Pack Finish paint, 2 pack Finish paint, Anti-fouling paint, 2 Pack A/C paint, Ballast paint and 1 Pack A/C paint.

Analyzing Impact of the Effect of Greenbelts on the Land Surface Temperature in Seoul Metropolitan Area (수도권 그린벨트가 지표면 온도에 미치는 영향 분석)

  • Kim, Hee-Jae
    • Journal of Urban Science
    • /
    • v.9 no.1
    • /
    • pp.17-31
    • /
    • 2020
  • This study aims to analyze the relations among greenbelt, urban land surface temperature empirically in order to assess the environmental effects of the greenbelt in the Seoul metropolitan area, objectively. For this purpose, this study conducts an empirical analysis of impacts of greenbelt on urban land surface temperature using a multiple-regression model. The main data employed in the analysis include real-time air pollution data, Landsat 8-OLI Landsat imagery data, KLIS data and Jip-gye-gu data. The major findings are summarized as follows. NDVI has a negative (-) correlation with the land surface temperature, and the urban temperature is high in areas with poor vegetation. The land surface temperature is low in residential or commercial areas, while the temperature is high in industrial areas. The temperature is low in green fields, open spaces, and river areas. it is found that the urban land surface temperature is low in the greenbelt zone. In the greenbelt zone, there is an effect that reduces the land surface temperature by 1% on average, as compared to that at the center of the Seoul metropolitan area. Especially, the center of the Seoul metropolitan area, in a range from 0.6% to 1.9% of the average temperature, the temperature gets lower up to approximately 3km from the greenbelt boundary.

EMISSION CHARACTERISTICS IN ULTRA LOW SULFUR DIESEL

  • Oh, S.-K.;Baik, D.-S.;Han, Y.C.
    • International Journal of Automotive Technology
    • /
    • v.4 no.2
    • /
    • pp.95-100
    • /
    • 2003
  • Automobile industry has been developed rapidly as a key manufacturing industry in Korea. Meanwhile, air pollution is getting worse noticeably than ever. In the diesel emission, PM (Particulate Matter) and NOx (Nitrogen Oxides) have been exhausted with a great amount and the corresponding emission regulations are getting stringent. In order to develop low emission engines, it is necessary to research on better qualified fuels. Sulfur contained in fuel is transformed to sulfur compound by DOC (Diesel Oxidation Catalyst) and then it causes to the increase of sulfate-laden PM on the surface of catalyst. In this research, ULSD (Ultra Low Sulfur Diesel) is used as a fuel and some experimental results are investigated. ULSD can reduce not only PM but also gas materials because cetane value, flash point, distillation 90%, pour point and viscosity are improved in the process of desulfurization. However, excessively reduced sulfur may cause to decease lubricity of fuel and engine performance in fuel injection system. Therefore, it requires only modest adjusted amount of sulfur can improve engine performance and DOC, as well as decrease of emission.

Russian Forest Fire Smoke Aerosol Monitoring Using Satellite and AERONET Data (인공위성 자료와 AERONET 관측자료를 이용한 러시아산불 시 발생한 에어로졸의 중장거리 모니터링)

  • 이권호;김영준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.437-450
    • /
    • 2004
  • Extensive forest fire activities occurred across the border in Russia, particularly east of Lake Baikal between the Amur and Lena rivers in May 2003. These forest fires released large amounts of particulates and gases into the atmosphere, resulting in adverse effects on regional air quality and the global radiation budget. Smoke pollution from the Russian fires near Lake Baikal was transported to Korea through Mongolia and eastern China. On 20 May 2003, a number of large fires were burning in eastern Russian, producing a thick, widespread pall of smoke over much of Northeast Asia. In this study, separation technique was used for aerosol retrieval application with imagery from MODIS aboard TERRA satellites. MODIS true-color image shows the location of fires and the grayish color of the smoke plumes over Northeast Asia. Aerosol optical thckness (AOT) retrieved from the MODIS data were compared with fire hot spots, ground-based radiation data and TOMS -based aerosol index data. Large AOT, 2.0-5.0 was observed on 20 May 2003 over Korea due to the influence of the long range transport of smoke aerosol plume from the Russian fires, while surface observed fine mode of aerosol size distribution increased.