• Title/Summary/Keyword: Air Intake

Search Result 599, Processing Time 0.033 seconds

Evaluation of Physicochemical Properties and Enhancement of Antioxidant Activities of Dioscorea batatas by Stepwise Steaming Process (증숙 공정에 의한 마의 이화학적 특성 및 항산화 활성)

  • Kang, Moon-Kyung;Kim, Jin-Sook;Kim, Gi-Chang;Choi, Song-Yi;Kim, Kyung-Mi
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.25 no.6
    • /
    • pp.1049-1057
    • /
    • 2015
  • This study investigated the physicochemical properties of Dioscorea batatas for improvement of biological activities during a three-step steaming process, steaming $120^{\circ}C$ for 30 min and hot air drying at $60^{\circ}C$ for 8 hrs. Samples were extracted with 70% ethanol and analyzed for free sugars, and organic acids were analyzed by HPLC. The DPPH & ABTS radical scavenging activities, crude saponin, water binding capacity, oil absorption, and ${\alpha}$-glucosidase activity were measured. The major free sugars in all samples were fructose, maltose, and sucrose, and the free sugar contents increased to 157~235% after the three-step steaming process compared to the control. Organic acid contents of samples treated by steaming increased to greater than 55.8 mg/100g. The ABTS radical scavenging activity significantly increased with repeated steaming process, especially after the three-step process. As the time of steaming process increased, DPPH radical scavenging activity increased from 26.99% fresh Dioscorea batatas to 80.46~97.79% after the three-step process. Crude saponin content increased rapidly as steaming time increased, but decreased after the three-step process steaming process. The water-binding capacities of the samples treated by steaming process were higher than that of the control, whereas oil absorption decreased as steaming time increased. From the results, steaming process could be suggested as beneficial for controlling fat intake. Compared to acarbose, a known antidiabetic drug, used as a positive control, ${\alpha}$-glucosidase inhibitory activity of samples treated by two-step steaming was among the samples. The results suggest that Dioscorea batatas treated by steaming process has antioxidative and anti-diabetis activities and can be used as a natural health product.

Effects of Short-term Acute Heat Stress on Physiological Responses and Heat Shock Proteins of Hanwoo Steer (Korean Cattle)

  • Baek, Youl-Chang;Kim, Minseok;Jeong, Jin-Young;Oh, Young-Kyoon;Lee, Sung-Dae;Lee, Yoo-Kyung;Ji, Sang-Yun;Choi, Hyuck
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.173-182
    • /
    • 2019
  • This study was performed to evaluate the effect of heat stress on the status of physiological responses, blood parameter, serum T3 and cortisol, and heat shock proteins (HSP 27, 70, and 90) of Hanwoo cattle. Six Hanwoo steers (242.8 ± 7.2 kg of BW) were housed in the climate-controlled respiration chambers. The experiment consisted of 7 days (control; 0 day) at thermoneutral (air temperature (Ta) of 15℃ and relative humidity (RH) of 60%; temperature-humidity index (THI) = 64), and by 3 and 6 days (treatment groups) at heat stress (Ta of 35℃ and RH of 60%; THI = 87). Body temperature of each parts (frank, rump, perineum and foot) and rectal temperature elevated in heat stress groups (3 days and 6 days) than the control group (0 day). Respiration rates increased in 3 days and 6 days (88.5 ± 0.96 bpm and 86.3 ± 0.63 bpm, respectively) from 0 days (39.5 ± 0.65 bpm). Feed intake significantly decreased in heat stress groups (3 days and 6 days, 3.7 ± 0.14 kg and 4.0 ± 0.15 kg, respectively) than the control group (0 day, 5.0 ± 0.00 kg). In addition, final BW significantly decreased in heat stress groups (3 days and 6 days, 211.8 ± 4.75 kg and 215.5 ± 3.50 kg, respectively) than the control group (0 day, 240.0 ± 25.00 kg). However, heat stress has no significant effect on blood parameter, serum T3 and cortisol. Nevertheless, heat stress increased HSPs mRNA expression in liver tissue, and serum concentration of HSPs. Despite Hanwoo cattle may have high adaptive ability to heat stress, our results suggested that heat stress directly effect on body temperature and respiration rate as well as serum and tissue HSPs. Therefore, we are recommended that HSPs could be the most appropriate indicators of Hanwoo cattle response to heat stress.

Effects of Methanol Extract of Radix Achyranthis Bidentatae on Cadmium Inhalation Toxicity in Rat (우슬 메탄올 추출물이 흰쥐의 카드뮴 흡입독성완화에 미치는 영향)

  • Kang Hong Gu;Hong Ji Woo;Han Hyun Jung;Hwang Yoo Yeon;Jeong Jae Yeal;Lee Ki Nam
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1784-1794
    • /
    • 2004
  • To study the effects between Cd inhalation toxicity and methanol extract of Radix Achyranthis Bidentatae, 4 rat groups were exposed to Cd aerosol by whole-body inhalation exposure for 6 hours/day, 5 days/week, and 4 weeks. Cd concentration in air was 0.98㎎/㎥ and mass median diameter(MMD) was 1.78㎛. 3 different dose intraperitoneal injections of methanol extract of Radix Achyranthis Bidentatae to 3 inhalation exposure groups applied for 4 weeks and the results were as follows: The highest body weight gain for 4 weeks and food intake per day were from inhalation exposure group Ⅲ(p<0.05). The highest lung weight was from inhalation exposure group Ⅲ and the highest liver and kidney weight were from inhalation exposure group Ⅱ(p<0.05). The lowest Cd content in lung was 22.77㎍/g from inhalation exposure group Ⅲ(p<0.05). The highest Cd concentration in blood was 11.71㎍/㎗ from inhalation exposure group Ⅰ(p<0.05). Cd concentrations of 14.87㎍/g in liver and 17.91㎍/g in kidney were the highest from inhalation exposure group Ⅰ(p<0.05). The lowest Cd concentration in liver and kidney were 5.71㎍/g and 3.17㎍/g from the control(p<0.05). For weekly Cd concentration in urine, the highest value was 0.48㎍/㎖ from inhalation exposure group Ⅲ of the 3rd week and inhalation exposure group Ⅰ, Ⅱ of the 4th week. For weekly Cd concentration in feces, the highest value was 0.32㎍/g from inhalation exposure group Ⅰ, Ⅱ, Ⅲ. The highest metallothionein concentration in lung was 89.02㎍/g from inhalation exposure group Ⅲ(p<0.05). The highest metallothionein concentrations in liver and kidney were 265.47㎍/g and 214.21㎍/g from inhalation exposure group Ⅲ, respectively(p<0.05). The highest Hct, Hb, and WBC values were from inhalation exposure group Ⅱ and the highest RBC value was from inhalation exposure group Ⅲ(p<0.05). Mostly damaged part in liver tissue was hepatic lobule and the degrees of damage were lessened by the intraperitoneal injection of methanol extract of Radix Achyranthis Bidentatae. Proximal, distal convoluted tubules and glomerulus in kidney tissue were mostly damaged part. Degeneration and swelling were partially observed but the degrees of kidney tissue damage were lessened more or less by the intraperitoneal injection of methanol extract of Radix Achyranthis Bidentatae.

The Variation of Water Temperature and Turbidity of Stream Flows entering Imha Reservoir (임하호 유입지천의 수온과 탁도 변화)

  • Kim, Woo-Gu;Jung, Kwan-Soo;Yi, Yong-Kon
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.13-20
    • /
    • 2006
  • The changing patterns of water temperature and turbidity in streams entering Imha Reservoir were studied. The turbidity variation near the intake tower in Imha Reservoir was investigated in relation with the variation of water temperature and turbidity in streams. Water temperature was estimated using multi-regression method with air temperature and dew point as independent variables. Peak turbidity was also estimated using non-linear regression method with rainfall intensity as an independent variable. Although more independent variables representing watershed characteristics seem to be needed to increase estimation accuracies, the methodology used in this study can be applied to estimate water temperature and peak turbidity in other streams.

Effects of Hot Environment and Dietary Protein Level on Growth Performance and Meat Quality of Broiler Chickens

  • Gu, X.H.;Li, S.S.;Lin, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.11
    • /
    • pp.1616-1623
    • /
    • 2008
  • This study was conducted to determine the effect of hot environment and dietary crude protein level (CP) on performance, carcass characteristics, meat visual quality, muscle chemical composition and malondialdehyde (MDA) concentration of tissues in broilers. Two hundred and sixteen 21-d old Arbor Acre broilers were used in a $4\times3$ factorial arrangement and randomly reared in 4 environmental chambers and fed on 3 diets with different CP levels for 3 weeks. The results showed: (1) when air temperature (AT) rose to $33^{\circ}C$, average daily feed intake, average daily gain, carcass weight, right breast meat weight, left thigh and drumstick meat weight decreased (p<0.05) and feed conversion rate decreased (p<0.05), but the ratio of carcass to live weight and of left thigh and drumstick meat weight to carcass weight increased (p<0.05). (2) There were significant differences in pH and shear force in breast meat, and shear force, L* and a* in thigh meat (p<0.01 or 0.05) among hot environments. Dietary CP level tended to affect breast meat pH and pH and L* of thigh meat (p<0.06 or 0.09). Compared to the normal temperature ($22^{\circ}C$), low temperature ($15^{\circ}C$) and hot humid (AT $33^{\circ}C$, relative humidity (RH) 80%) treatments significantly (p<0.05) decreased the tenderness of thigh meat. L* and a* value in thigh meat under high temperature treatments, regardless of RH, were higher (p<0.05) than those under normal temperature. (3) Protein content in breast and thigh meat of broilers fed under high temperature ($33^{\circ}C$) was lower (p<0.05) than that under $22^{\circ}C$, but fat content had an adverse change. High temperature ($33^{\circ}C$) increased the moisture of breast meat significantly (p<0.05). Protein content in breast meat increased significantly (p<0.05), in which fat content had an adverse change (p<0.05), when the dietary protein rose. (4) MDA concentration in liver and breast meat under hot humid (AT $33^{\circ}C$, RH 80%) treatment increased markedly (p<0.05). (5) High humidity could sharpen the bad effect of high temperature on performance, carcass yield and choice cuts, crude protein and moisture content in breast meat. It was concluded that a hot environment could affect the performance and meat quality of broiler chicks more significantly than CP level and that high humidity would aggravate the bad influence of high temperature on the broiler.

A Study on Effect of Urea-SCR Aftertreatment System upon Exhaust Emissions in a LPG Steam Boiler (LPG 증기보일러의 배기 배출물에 미치는 요소-SCR 후처리 시스템의 영향에 관한 연구)

  • Bae, Myung-Whan;Song, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.1-11
    • /
    • 2014
  • The aim of this study is to investigate the effect of SCR reactor on the exhaust emissions characteristics in order to develop a urea-SCR aftertreatment system for reducing $NO_x$ emissions. The experiments are conducted by using a flue tube LPG steam boiler with the urea-SCR aftertreatment system. The urea-SCR aftertreatment system utilizes the ammonia converted from 17% aqueous urea solution injected in front of SCR catalyst as a reducing agent for reducing $NO_x$ emissions. The equivalence ratio, urea injection amount, ammonia slip and $NO_x$ conversion efficiency relative to boiler load are applied to discuss the experimental results. In this experiment, the average equivalence ratio is calculated by changing only the fuel consumption rate while the intake air amount is constantly fixed at $25,957.11cm^3/sec$. The average equivalence ratios are 1.38, 1.11, 0.81 and 0.57 when boiler loads are 100, 80, 60 and 40%. The $NO_x$ conversion efficiency is raised with increasing urea injection amount, and $NH_3$ slip is also boosted at the same time. Consequently, the $NO_x$ conversion efficiency relative to boiler load should be examined in combination with urea injection amount and $NH_3$ slip. The results are calculated by 89, 85, 77 and 79% for the boiler loads of 100, 80, 60 and 40%. The appropriate amount of urea injection for the respective boiler load can be not discussed by only $NO_x$ emissions, and should be determined by considering the $NO_x$ conversion efficiency, $NH_3$ slip and reactive activation temperature simultaneously. In this study, the urea amounts of 230, 235, 233 and 231 mg/min are injected at the boiler loads of 100, 80, 60 and 40%, and the final $NH_3$ slips are measured by 8.48, 5.58, 11.97 and 11.34 ppm at the same conditions. THC emission is affected by the SCR reactor under other experimental conditions except 100% engine load, and CO emission at only 40% engine load. The rest of exhaust emissions are not affected by the SCR reactor under all experimental conditions.

Study on the simulation of a spark ignition engine using BOOST (상용 소프트웨어를 이용한 스파크 점화 기관의 시뮬레이션에 관한 연구)

  • Jeong, Chang-Sik;Woo, Seok-Keun;Ryu, Soon-Pil;Yoon, Keon-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.733-742
    • /
    • 2016
  • In recent years, gas engines fueled with LNG or synthetic gas have been attracting considerable attention for marine use owing to their potential to facilitate better fuel economy and to reduce emissions. It has been confirmed that gas engines using the Otto cycle, which involves premixed combustion, can satisfy Tier III regulations without the EGR or SCR system. The objective of this study is to acquire simulation technologies for predicting gas engine performances in industrial fields. Using the commercial software BOOST, the simulation is conducted on a gasoline engine rather than a marine engine due to the gasoline engine's easier accessibility. This study consists of two stages. In the first stage published previously, the optimal modeling techniques for representing the behavior of the gas in the intake and exhaust systems were determined. In the current study, we formulated a method to evaluate the combustion and heat transfer processes in the cylinder and to ultimately determine the major performance parameters, given that the analytical model derived from the previous stage has been applied. Through this study, we were able to determine a combustion and heat transfer model and a valve discharge coefficient that are less reliant on empirical data: we were also able to formulate a methodology through which relevant constants are decided. We confirmed that the values of transient cylinder pressure variation, indicated mean effective pressure, and air supply can be successfully predicted using our modeling techniques.

Effects of Panax ginseng on Alcohol Detoxification (인삼의 알콜해독 효과)

  • Lee F.C.;Ko J.H.;Park J.K.;Lee J.S.
    • Proceedings of the Ginseng society Conference
    • /
    • 1988.08a
    • /
    • pp.25-27
    • /
    • 1988
  • To assess the effect of Panax ginseng on the detoxification of ethanol. we examined its effect on blood ethanol clearance in both man and experimental animals and on the rate of ethanol oxidation to carbon dioxide in experimental animals. Fourteen healthy male volunteers were subject to studies. The blood alcohol level in the test group receiving ginseng extract (3g/kg b.w.) along with alcohol (70g/65kg b.w.) was about $35\%$ lower than their control levels at 40 min after ethanol intake. When the blood alcohol level was compared on individual bases. blood alcohol concentrations in 10 subjects ranged from 32 to $51\%$ lower than their control values. The remaining 4 subjects appeared to have a high tolerance level. In experimental animals. the blood alcohol clearance was also much faster in test animals receiving ginseng along with ethanol. The rate of ethanol elimination was determined by the amount of $^{14}CO_2$ in exhaled air following the administration of [$^{14}C$] ethanol. During the first 7 1/4 hr (Phase I) after the ethanol administration. the $CO_2$ output was greater in test animals receving ginseng along with ethanol. whereas from beyond 7 1/4 hr to the near end (Phase II). the $CO_2$ output in control animals was over twice that in test animals. The present studies clearly demonstrate that ginseng promotes the overall metabolism of ethanol. resulting in an enhanced blood alcohol clearance and alcohol elimination.

  • PDF

Evaluation of EGR applicability for NOx reduction in lean-burn LPG direct injection engine (초희박 LPG 직접분사식 엔진에서 질소산화물 저감을 위한 배기재순환 적용성 평가)

  • Park, Cheolwoong;Cho, Seehyeon;Kim, Taeyoung;Cho, Gyubaek;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.22-28
    • /
    • 2015
  • In order to keep the competitiveness of LPG fuel for transportation fuel, the difference in fuel consumption with gasoline and cost for an aftertreatment system should be reduced with continuous development of technology for LPG engine. In the present study, spray-guided type direct injection combustion system, whose configuration is composed of direct injector in the vicinity of spark plug, was employed to realize stable lean combustion. A certain level of nitrogen oxides($NO_x$) emits due to a locally rich mixture regions in the stratified mixture. With the application of EGR system for the reduction of $NO_x$, 15% of $NO_x$ reduction was achieved whereas fuel consumption and hydrocarbon emission increased. By the application of EGR, the combustion speed reduced especially appeared at initial flame development period and peak heat release rates and increasing rates for heat release rate decreased as EGR rate increased due to the dilution effect of intake air.

Current research status and analysis methods on the effects of food surface properties on particulate matter adsorption (식품 표면 특성에 따른 미세먼지 흡착 연구 현황 및 분석 방법)

  • Lim, Dayoung;Park, Sun-Young;Lee, Dong-Un;Chung, Donghwa
    • Food Science and Industry
    • /
    • v.54 no.1
    • /
    • pp.11-28
    • /
    • 2021
  • Air pollution caused by particulate matters (PM) has become a global issue. PM is known to threaten human health by causing respiratory and cardiovascular disease. PM can be introduced to human gastrointestinal track through food intake, causing inflammation and changes in gut microbiota. Even at low PM concentrations, prolonged exposure to PM can cause significant accumulation of PM in food products. The adsorption of PM onto food surfaces is expected to be strongly influenced by the properties of food surfaces, but few studies have been reported. This paper examines several important food surface properties that may affect the interactions between PM and food surfaces, including surface wettability, surface charge, and surface microstructure. Understanding the adsorption of PM onto food surfaces can provide useful guidance for classifying PM-sensitive foods and controlling food chains, including cultivation, processing, preservation, and cooking, to ensure food safety against PM.