DOI QR코드

DOI QR Code

Current research status and analysis methods on the effects of food surface properties on particulate matter adsorption

식품 표면 특성에 따른 미세먼지 흡착 연구 현황 및 분석 방법

  • Lim, Dayoung (Food Technology Major, Graduate School of International Agricultural Technology, Seoul National University) ;
  • Park, Sun-Young (Department of Food Science and Biotechnology, Chung-Ang University) ;
  • Lee, Dong-Un (Department of Food Science and Biotechnology, Chung-Ang University) ;
  • Chung, Donghwa (Food Technology Major, Graduate School of International Agricultural Technology, Seoul National University)
  • 임다영 (서울대학교 국제농업기술대학원 바이오식품산업전공) ;
  • 박선영 (중앙대학교 식품생명공학과) ;
  • 이동언 (중앙대학교 식품생명공학과) ;
  • 정동화 (서울대학교 국제농업기술대학원 바이오식품산업전공)
  • Received : 2021.01.20
  • Accepted : 2021.03.12
  • Published : 2021.03.31

Abstract

Air pollution caused by particulate matters (PM) has become a global issue. PM is known to threaten human health by causing respiratory and cardiovascular disease. PM can be introduced to human gastrointestinal track through food intake, causing inflammation and changes in gut microbiota. Even at low PM concentrations, prolonged exposure to PM can cause significant accumulation of PM in food products. The adsorption of PM onto food surfaces is expected to be strongly influenced by the properties of food surfaces, but few studies have been reported. This paper examines several important food surface properties that may affect the interactions between PM and food surfaces, including surface wettability, surface charge, and surface microstructure. Understanding the adsorption of PM onto food surfaces can provide useful guidance for classifying PM-sensitive foods and controlling food chains, including cultivation, processing, preservation, and cooking, to ensure food safety against PM.

미세먼지는 식품, 특히 식용작물이나 길거리 식품 등을 통해 인체에 유입될 가능성이 높은데, 위장관에 유입될 경우 염증을 유발하거나 장내 마이크로바이옴에 변화를 가져와 건강을 해칠 수 있다는 연구결과가 최근 보고되었다. 낮은 농도라 하더라도 미세먼지에 장시간 노출 될 경우 많은 양의 미세먼지가 식품에 축적될 수 있으므로 현대사회에 부응하는 수준의 식품안전을 위해서는 미세먼지에 대한 고려도 반드시 필요하다. 미세먼지가 식품 표면에 흡착하는 것은 여러 요인들의 영향을 받는 복잡한 현상으로 예측되지만 아직 이러한 현상에 관련된 체계적 연구는 거의 보고된 바가 없다. 미세먼지의 식품 흡착 현상은 식품 표면의 특성에 크게 영향을 받을 것으로 예상되는데, 농약 등 화학물질이나 미생물의 식품 흡착에 대한 연구보고를 고려할 때 특히 표면 젖음성, 표면 전하, 표면 미세구조 등의 요인들이 미세먼지의 식품흡착에 큰 영향을 줄 것으로 예상된다. 식품의 표면특성이 미세먼지 흡착에 미치는 영향을 이해한다면, 미세먼지에 취약한 식품군을 분류하고 재배, 저장, 조리 등의 환경을 조정하여 보다 효과적으로 미세먼지로부터 식품안전을 확보할 수 있으리라 판단된다.

Keywords

References

  1. Anderson JO, Thundiyil JG, Stolbach A. Clearing the air: a review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 8:166-175 (2012) https://doi.org/10.1007/s13181-011-0203-1
  2. AQEG. Particulate Matter in the United Kingdom. Department of Environment, Food and Rural Affairs, London, UK (2005)
  3. Bae SH, Hong YC. Health effects of particulate matter. J. Korean Med. Assoc. 61:749-755 (2018) https://doi.org/10.5124/jkma.2018.61.12.749
  4. Beckett KP, Freer-Smith PH, Taylor G. Urban woodlands: their role in reducing the effects of particulate pollution. Environ. Pollut. 99:347-360 (1998) https://doi.org/10.1016/S0269-7491(98)00016-5
  5. Bowen WR, Doneva TA. Atomic force microscopy studies of nanofiltration membranes: surface morphology, pore size distribution and adhesion. Desalination 129:163-172 (2000) https://doi.org/10.1016/S0011-9164(00)00058-8
  6. Casariego A, Souza BWS, Vicente, AA, Teixeira, JA, Cruz L, Diaz R. Chitosan coating surface properties as affected by plasticizer, surfactant and polymer concentrations in relation to the surface properties of tomato and carrot. Food Hydrocoll. 22:1452-1459 (2008) https://doi.org/10.1016/j.foodhyd.2007.09.010
  7. Chen L, Liu C, Zhang L, Zou R, Zhang Z. Variation in tree species ability to capture and retain airborne fine particulate matter (PM2.5). Sci. Rep. 7:1-11 (2017) https://doi.org/10.1038/s41598-016-0028-x
  8. Chiam Z, Song XP, Lai HR, Tan HTW. Particulate matter mitigation via plants: Understanding complex relationships with leaf traits. Sci. Total Environ. 688:398-408 (2019) https://doi.org/10.1016/j.scitotenv.2019.06.263
  9. Choi WY, Park HJ, Ahn DJ, Lee J, Lee CY. Wettability of chitosan coating solution on 'Fuji' apple skin. J. Food Sci. 67:2668-2672 (2002) https://doi.org/10.1111/j.1365-2621.2002.tb08796.x
  10. Chow JC, Watson JG, Doraiswamy P, Chen LWA, Sodeman DA, Lowenthal DH., Park KH, Arnott WP, Motallebi N. Aerosol light absorption, black carbon, and elemental carbon at the Fresno Supersite, California. Atmos. Res. 93:874-887 (2009) https://doi.org/10.1016/j.atmosres.2009.04.010
  11. De-la-Pinta I, Cobos M, Ibarretxe J, Montoya E, Eraso E, Guraya T, Quindos G. Effect of biomaterials hydrophobicity and roughness on biofilm development. J. Mater. Sci.: Mater. Med. 30:77 (2019) https://doi.org/10.1007/s10856-019-6281-3
  12. Dickson JS, Koohmaraie M. Cell surface charge characteristics and their relationship to bacterial attachment to meat surfaces. Appl. Environ. Microbiol. 55:832-836 (1989) https://doi.org/10.1128/AEM.55.4.832-836.1989
  13. Dockery DW, Pope CA, Acute respiratory effects of particulate air pollution. Annu. Rev. Public Health 15:107-132 (1994) https://doi.org/10.1146/annurev.pu.15.050194.000543
  14. Fang H., Zhang, Z., Xiao, S., & Liu, Y. Influence of leaf surface wettability on droplet deposition effect of rape leaves and their correlation. J. Agric. Food Res. 1:100011 (2019) https://doi.org/10.1016/j.jafr.2019.100011
  15. Feng J, Cavallero S, Hsiai T, Li R. Impact of air pollution on intestinal redox lipidome and microbiome. Free Radic. Biol. Med. 151:99-110 (2020) https://doi.org/10.1016/j.freeradbiomed.2019.12.044
  16. Fernandes PE, San Jose JFB, Zerdas ERMA, Andrade NJ, Fernandes CM, Silva LD. Influence of the hydrophobicity and surface roughness of mangoes and tomatoes on the adhesion of Salmonella enterica Serovar Typhimurium and evaluation of cleaning procedures using surfactin. Food Control 41:21-26 (2014) https://doi.org/10.1016/j.foodcont.2013.12.024
  17. Ferraris S, Cazzola M, Peretti V, Stella B, Spriano S. Zeta potential measurements on solid surfaces for in vitro biomaterials testing: surface charge, reactivity upon contact with fluids and protein absorption. Front. Bioeng. Biotechnol. 6:60 (2018) https://doi.org/10.3389/fbioe.2018.00060
  18. Gao Y, Guo R, Fan R, Liu Z, Kong W, Zhang P, Du FP. Wettability of pear leaves from three regions characterized at different stages after flowering using the OWRK method. Pest Manag. Sci. 74:1804-1809 (2018) https://doi.org/10.1002/ps.4878
  19. Gao Y, Lu J, Zhang P, Shi G, Li Y, Zhao J, Liu Z, Yang J, Du F, Fan R. Wetting and adhesion behavior on apple tree leaf surface by adding different surfactants. Colloids Surf. B. 187:110602 (2020) https://doi.org/10.1016/j.colsurfb.2019.110602
  20. Grzegorzewski F, Rohn S, Kroh LW, Geyer M, Schlüter O. Surface morphology and chemical composition of lamb's lettuce (Valerianella locusta) after exposure to a low-pressure oxygen plasma. Food Chem. 122:1145-1152. (2010) https://doi.org/10.1016/j.foodchem.2010.03.104
  21. Ha EH, Lee JT, Kim H, Hong YC, Lee BE, Park HS, Christiani DC. Infant susceptibility of mortality to air pollution in Seoul, South Korea. Pediatrics 111:284-290 (2003) https://doi.org/10.1542/peds.111.2.284
  22. Ham JY, Lee MH, Kim HS, Park HJ, Cho GN, Park JM. Variation of OC and EC in PM2.5 at Mt. Taehwa. J. Korean Soc. Atmos. Environ. 32:21-31 (2015) https://doi.org/10.5572/KOSAE.2016.32.1.021
  23. Hershko V, Weisman D, Nussinovitch A. Method for studying surface topography and roughness of onion and garlic skins for coating purposes. J. Food Sci. 63:317-321 (1998)
  24. Hime NJ, Marks GB, Cowie CT. A comparison of the health effects of ambient particulate matter air pollution from five emission sources. Int. J. Environ. Res. Public Health 15:1206 (2018) https://doi.org/10.3390/ijerph15061206
  25. Hong ST, Chung D. Food Emulsions. Soohaksa, Seoul, South Korea (2019)
  26. Hu J, Wu L, Zheng B, Zhang Q, He K, Chang Q, Li X, Yang F, Ying Q, Zhang H. Source contributions and regional transport of primary particulate matter in China. Environ. Pollut. 207:31-42 (2015) https://doi.org/10.1016/j.envpol.2015.08.037
  27. IARC, IARC: Outdoor air pollution a leading environmental cause of cancer deaths. The International Agency for Research on Cancer, Lyon, France. Press release N° 221 (2013)
  28. Jang AS. Particulate matter and bronchial asthma. Korean J. Med. 88:150-155 (2015) https://doi.org/10.3904/kjm.2015.88.2.150
  29. Joo SW, Ji JH. Size Distribution characteristics of particulate matter emitted from cooking. Part. Aerosol Res. 16:9-17 (2020)
  30. Jia J, Bi C, Zhang J, Jun X, Chen Z. Characterization of polycyclic aromatic hydrocarbons (PAHs) in vegetables near industrial areas of Shanghai, China: Sources, exposure, and cancer risk. Environ. Pollut. 241:750-758 (2018) https://doi.org/10.1016/j.envpol.2018.06.002
  31. Keijbets EL, Chen J, Dickinson E, Vieira J. Surface energy investigation of chocolate adhesion to solid mould materials. J. Food Eng. 92:217-225 (2009) https://doi.org/10.1016/j.jfoodeng.2008.11.008
  32. Kim D, Lee SJ. Effect of water microdroplet size on the removal of indoor particulate matter. Build. Environ. 181:107097. (2020) https://doi.org/10.1016/j.buildenv.2020.107097
  33. Kim KH, Kabir E, Kabir S. A review on the human health impact of airborne particulate matter. Environ. Int. 74:136-143 (2015) https://doi.org/10.1016/j.envint.2014.10.005
  34. KS B ISO4287. Geometrical Product Specifications (GPS) - Surface Texture: Profile Method - Terms, Definitions and Surface Texture Parameters (2019)
  35. KS B ISO25178-2. Geometrical Product Specifications (GPS) - Surface Texture: Areal - Part 2: Terms, Definitions and Surface Texture Parameters (2017)
  36. Lazouskaya V, Sun T, Liu L, Wang G, Jin Y. Effect of surface properties on colloid retention on natural and surrogate produce surfaces. J. Food Sci. 81(12):E2956-E2965 (2016) https://doi.org/10.1111/1750-3841.13543
  37. Lee HD, Kyung KS, Kwon HY, Ihm YB, Kim JB, Park SS, Kim JE. Residue characteristics of hexaconazole and chlorothalonil in several fruits. Korean J. Pestic. Sci. 8:107-111 (2004)
  38. Lee KB, Kim SD, Kim DS. Ion compositional existence forms of PM10 in Seoul area. J. Korean Soc. Environ. Eng. 04:197-203 (2015)
  39. Li ZY, Liu Y, Zheng YY, Xu RK. Zeta potential at the root surfaces of rice characterized by streaming potential measurements. Plant Soil. 386:237-250 (2015) https://doi.org/10.1007/s11104-014-2259-6
  40. Magnani ND, Muresan XM, Belmonte G, Cervellati F, Sticozzi C, Pecorelli A, Miracco C, Marchini T, Evelson P, Valacchi G. Skin damage mechanisms related to airborne particulate matter exposure. Toxicol. Sci. 149:227-236 (2016) https://doi.org/10.1093/toxsci/kfv230
  41. Muff LF, Luxbacher T, Burgert I, Michen B. Investigating the time-dependent zeta potential of wood surfaces. J. Colloid Interface Sci. 518:165-173 (2018) https://doi.org/10.1016/j.jcis.2018.02.022
  42. Myong JP. Health Effects of Particulate Matter. Korean J. Med. 91:106-113 (2016) https://doi.org/10.3904/kjm.2016.91.2.106
  43. NIER. Annual Report of Air Quality in Korea 2019. National Institute of Environmental Research, Incheon, Korea (2020)
  44. Noh KD, Thi LT, Jeong BR. Particulate matter in the cultivation area may contaminate leafy vegetables with heavy metals above safe levels in Korea. Environ. Sci. Pollut. Res. 26:25762-25774 (2019) https://doi.org/10.1007/s11356-019-05825-4
  45. Nowak DJ, Crane DE, Stevens JC. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 4:115-123 (2006) https://doi.org/10.1016/j.ufug.2006.01.007
  46. Nowak DJ, Hirabayashi S, Bodine A, Hoehn R. Modeled PM2.5 removal by trees in ten US cities and associated health effects. Environ. Pollut. 178:395-402 (2013) https://doi.org/10.1016/j.envpol.2013.03.050
  47. Ny MT, Lee BK. Size distribution of airborne particulate matter and associated metallic elements in an urban area of an industrial city in Korea. Aerosol Air Qual. Res. 11:643-653 (2011) https://doi.org/10.4209/aaqr.2010.10.0090
  48. OECD (2016), The Economic Consequences of Outdoor Air Pollution, OECD Publishing, Paris, https://doi.org/10.1787/9789264257474-en.
  49. Okuda T, Yoshida T, Gunji Y, Okahisa S, Kusdianto K, Gen M, Sato S, Lenggoro I W. Preliminary study on the measurement of the electrostatic charging state of PM2.5 collected on filter media. Asian J. Atmos. Environ. 9:137-145 (2015) https://doi.org/10.5572/ajae.2015.9.2.137
  50. Plumier B, Zhao Y, Cook S, Ambrose RK. Adhesion of diatomaceous earth dusts on wheat and corn kernels. J. Stored Prod. Res. 83:347-352 (2019) https://doi.org/10.1016/j.jspr.2019.08.001
  51. Przybysz A, Stepniak A, Malecka-Przybysz M, Zhu C, WinskaKrysiak M. Particulate matter accumulation on apples and plums: Roads do not represent the greatest threat. Agronomy 10:1709 (2020) https://doi.org/10.3390/agronomy10111709
  52. Rai PK. Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. Ecotoxicol. Environ. Saf. 129:120-136 (2016) https://doi.org/10.1016/j.ecoenv.2016.03.012
  53. Ribeiro C, Vicente AA, Teixeira JA, Miranda C. Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biol. Tec. 44:63-70 (2007) https://doi.org/10.1016/j.postharvbio.2006.11.015
  54. Sandrini S, Fuzzi S, Piazzalunga A, Prati P, Bonasoni P, Cavalli F, Bove MC, Calvello M, Cappelletti D, Colombi C, Contini D, Gianluigi de Gennaro, Gilio AD, Fermo P, Ferrero L, Gianelle V, Giugliano M, Ielpo P, Lonati G, Marinoni A, Massabò D, Molteni U, Moroni B, Pavese G, Perrino c, Perrone MG, Perrone MR, Putaud JP, Sargolini T, Vecchi R, Gilardoni S. Spatial and seasonal variability of carbonaceous aerosol across Italy. Atmospheric Environ. 99:587-598 (2014) https://doi.org/10.1016/j.atmosenv.2014.10.032
  55. Son JY, Lee JT, Kim KH, Jung K, Bell ML. Characterization of fine particulate matter and associations between particulate chemical constituents and mortality in Seoul, Korea. Environ. Health Perspect. 120:872-878 (2012) https://doi.org/10.1289/ehp.1104316
  56. Skurtys O, Velasquez P, Henriquez O, Matiacevich S, Enrione J, Osorio F. Wetting behavior of chitosan solutions on blueberry epicarp with or without epicuticular waxes. LWT-Food Sci. Technol. 44(6):1449-1457 (2011) https://doi.org/10.1016/j.lwt.2011.02.007
  57. Szidat S, Ruff M, Perron N, Wacker L, Synal HA, Hallquist M, Shannigrahi AS, Yttri KE, Dye C, SimpsonD. Fossil and nonfossil sources of organic carbon (OC) and elemental carbon (EC) in Goteborg, Sweden. Atmos. Chem. Phys. 9(5):1521-1535 (2009) https://doi.org/10.5194/acp-9-1521-2009
  58. Tessum MW, Raynor PC. Effects of spray surfactant and particle charge on respirable coal dust capture. Saf. Health Work 8:296-305 (2017) https://doi.org/10.1016/j.shaw.2016.12.006
  59. Tofail SAM, Gandhi AA. Electrical modifications of biomaterials' surfaces: Beyond hydrophobicity and hydrophilicity. vol. 21, pp. 3-14. In Biological Interactions with Surface Charge in Biomaterials. Royal Society of Chemistry, Cambridge, UK (2011)
  60. van Oss CJ, Chaudhury MK, Good RJ. Interfacial lifshitz-van der Waals and polar interactions in macroscopic systems. Chem. Rev. 88:927-941 (1988) https://doi.org/10.1021/cr00088a006
  61. van Oss CJ, Good RJ, Chaudhury MK. The role of van der Waals forces and hydrogen bonds in hydrophobic interactions between biopolymers and low energy surfaces. J. Colloid Interface Sci. 111:378-390 (1986) https://doi.org/10.1016/0021-9797(86)90041-X
  62. Vogler EA. Structure and reactivity of water at biomaterial surfaces. Adv. Colloid Interface Sci. 74:69-117. (1998) https://doi.org/10.1016/S0001-8686(97)00040-7
  63. Wang H, Shi H, Li Y, Yo Y, Zhang J. Seasonal variations in leaf capturing of particulate matter, surface wettability and micromorphology in urban tree species. Front. Environ. Sci. Eng. 7:579-588 (2013) https://doi.org/10.1007/s11783-013-0524-1
  64. Wang H, Feng H, Liang W, Luo Y, Malyarchuk V. Effect of surface roughness on retention and removal of Escherichia coli O157: H7 on surfaces of selected fruits. J. Food Sci. 74:E8-E15 (2009) https://doi.org/10.1111/j.1750-3841.2008.00998.x
  65. Woodby B, Schiavone ML, Pambianchi E, Mastaloudis A, Hester SN, Wood SM, Percorelli A, Valacchi G. Particulate matter decreases intestinal barrier-associated proteins levels in 3D human intestinal model. Int. J. Environ. Res. Public Health 17:3234 (2020) https://doi.org/10.3390/ijerph17093234
  66. Woodruff TJ, Parker JD, Schoendorf KC. Fine particulate matter (PM2.5) air pollution and selected causes of postneonatal infant mortality in California. Environ. Health Perspect. 114:786-790 (2006) https://doi.org/10.1289/ehp.8484
  67. Wu S, Altenried S, Zogg A, Zuber F, Maniura-Weber K, Ren Q. Role of the surface nanoscale roughness of stainless steel on bacterial adhesion and microcolony formation. ACS Omega 3:6456-6464 (2018) https://doi.org/10.1021/acsomega.8b00769
  68. Wu T, Fang X, Yang Y, Meng M, Yao P, Liu Q, Zhang B, Liu F, Zou A, Cheng J. Eco-friendly water-based λ-cyhalothrin polydopamine microcapsule suspension with high adhesion on leaf for reducing pesticides loss. J. Agric. Food Chem. 68: 12549-12557 (2020) https://doi.org/10.1021/acs.jafc.0c02245
  69. Whitehead KA, Verran J. The effect of surface topography on the retention of microorganisms. Food Bioprod. Process. 84:253-259 (2006) https://doi.org/10.1016/S0960-3085(06)70547-8
  70. Yuan Y, Lee TR. Contact angle and wetting properties. Springer Series in Surface Sciences, vol 51. Springer, Berlin, Heidelberg. pp. 3-34 (2013)
  71. Zhang W, Wang B, Niu X. Relationship between leaf surface characteristics and particle capturing capacities of different tree species in Beijing. Forests. 8:92 (2017) https://doi.org/10.3390/f8030092
  72. Zhu YJ, Olson N, Beebe TP. Surface chemical characterization of 2.5-㎛ particulates (PM2.5) from air pollution in salt lake city using TOF-SIMS, XPS, and FTIR. Environ. Sci. Technol. 35:3113-3121 (2001) https://doi.org/10.1021/es0019530
  73. Zhu YQ, Yu CX, Li Y, Zhu QQ, Zhou L, Cao C, Yu TT Du FP. Research on the changes in wettability of rice (Oryza sativa.) leaf surfaces at different development stages using the OWRK method. Pest Manag. Sci. 70:462-469. (2014) https://doi.org/10.1002/ps.3594
  74. 대기환경보전법. 법률 제17797호 (2020)