Browse > Article
http://dx.doi.org/10.5713/ajas.2008.70395

Effects of Hot Environment and Dietary Protein Level on Growth Performance and Meat Quality of Broiler Chickens  

Gu, X.H. (State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences)
Li, S.S. (State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences)
Lin, H. (Department of Animal Science, Shandong Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.21, no.11, 2008 , pp. 1616-1623 More about this Journal
Abstract
This study was conducted to determine the effect of hot environment and dietary crude protein level (CP) on performance, carcass characteristics, meat visual quality, muscle chemical composition and malondialdehyde (MDA) concentration of tissues in broilers. Two hundred and sixteen 21-d old Arbor Acre broilers were used in a $4\times3$ factorial arrangement and randomly reared in 4 environmental chambers and fed on 3 diets with different CP levels for 3 weeks. The results showed: (1) when air temperature (AT) rose to $33^{\circ}C$, average daily feed intake, average daily gain, carcass weight, right breast meat weight, left thigh and drumstick meat weight decreased (p<0.05) and feed conversion rate decreased (p<0.05), but the ratio of carcass to live weight and of left thigh and drumstick meat weight to carcass weight increased (p<0.05). (2) There were significant differences in pH and shear force in breast meat, and shear force, L* and a* in thigh meat (p<0.01 or 0.05) among hot environments. Dietary CP level tended to affect breast meat pH and pH and L* of thigh meat (p<0.06 or 0.09). Compared to the normal temperature ($22^{\circ}C$), low temperature ($15^{\circ}C$) and hot humid (AT $33^{\circ}C$, relative humidity (RH) 80%) treatments significantly (p<0.05) decreased the tenderness of thigh meat. L* and a* value in thigh meat under high temperature treatments, regardless of RH, were higher (p<0.05) than those under normal temperature. (3) Protein content in breast and thigh meat of broilers fed under high temperature ($33^{\circ}C$) was lower (p<0.05) than that under $22^{\circ}C$, but fat content had an adverse change. High temperature ($33^{\circ}C$) increased the moisture of breast meat significantly (p<0.05). Protein content in breast meat increased significantly (p<0.05), in which fat content had an adverse change (p<0.05), when the dietary protein rose. (4) MDA concentration in liver and breast meat under hot humid (AT $33^{\circ}C$, RH 80%) treatment increased markedly (p<0.05). (5) High humidity could sharpen the bad effect of high temperature on performance, carcass yield and choice cuts, crude protein and moisture content in breast meat. It was concluded that a hot environment could affect the performance and meat quality of broiler chicks more significantly than CP level and that high humidity would aggravate the bad influence of high temperature on the broiler.
Keywords
Hot Environment; Dietary Protein Level; Performance; Meat Quality; Broiler;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Mccurdy, R., D. S. Barbut and M. Quinton. 1996. Seasonal effect on pale soft exudative (PSE) occurrence in young turkey breast meat. Food Res. Int. 29:363-366.   DOI   ScienceOn
2 McKee, S. R. and A. R. Sams. 1997. The effect of seasonal heat stress on rigor development and the incidence of pale, exudative turkey meat. Poult. Sci. 76:1616-1620.   DOI
3 Musharaf, N. A. and J. D. Latshaw. 1999. Heat increment as affected by protein and amino acid nutrition. World's Poult. Sci. J. 55:233-240.   DOI   ScienceOn
4 Northcutt, J. K., E. A. Foegeding and F. W. Edens. 1994. Waterholding properties of thermally preconditiond chicken breast and leg meat. Poult. Sci. 73:308-316.   DOI   ScienceOn
5 Lin, H., S. J. Sui, H. C. Jiao, J. Buyse and E. Decuypere. 2006a. Impaired development of broiler chickens by stress mimicked by corticosterone exposure. Comp. Biochem. Physiol., Part A. 143:400-405.   DOI   ScienceOn
6 Temim, S., A. M. Chagneau, S. Guillaumin, J. Michael, R. Peresson and S. Tesseraud. 2000. Does excess dietary protein improve growth performance and carcass characteristics in heat-exposed chickens? Poult. Sci. 79:312-317.   DOI
7 Teeter, R. G., M. O. Smith, F. N. Owens, S. C. Arp, S. Sangiah and J. E. Breazile. 1985. Chronic heat stress and respiratory alkalosis: occurrence and treatment in broiler chicks. Poult. Sci. 64:1060-1064.   DOI   ScienceOn
8 Yahav, S., S. Goldfeld, I. Plavnik and S. Hurwitz. 1995. Physiological responses of chickens and turkeys to relative humidity during exposure to high ambient temperature. J. Therm. Biol. 20:245-253.   DOI   ScienceOn
9 Osman, A. M. A., E. S. Tawfik, F. W. Klein and W. Hebeler. 1989. Effect of environmental temperature on growth, carcass traits and meat quality of broilers of both sexes and different ages. 1. Growth. Archiv fur Geflugelkunde 53:168-175.
10 Owens, C. M., S. R. McKee, N. S. Matthews and A. R. Sams. 2000. The development of pale, exudative meat in two genetic lines of turkeys subjected to heat stress and its prediction by halothane screening. Poult. Sci. 79:430-435..   DOI
11 Sandercock, D. A., R. R. Hunter, G. R. Nute, M. A. Mitchell and P. M. Hocking. 2001. Acute heat stress-induced alterations in blood acid/base status and skeletal muscle membrane integrity in broiler chickens at two ages: implications for meat quality. Poult. Sci. 80:418-425.   DOI
12 Baghel, R. P. S. and K. Pradhan. 1991. Influence of dietary energy and protein levels on the utilization of metabolisable energy in broilers during hot humid season. Indian Vet. J. 68:139-144.
13 Slater, T. F. 1984. Free radical mechanisms in tissue in injury. Biochem. J. 222:1-15.   DOI
14 Tankson, J. D., Y. Vizzier-Thaxton, J. P. Tankson, J. D. May and J. A. Cameron. 2001. Stress and nutritional quality of broilers. Poult. Sci. 80:1384-1389.   DOI
15 Lin, H., E. Decuypere and J. Buyse. 2006b: Acute heat stress induces oxidative stress in broiler chickens. Comp. Biochem. Physiol., Part A. 144:11-17.   DOI   ScienceOn
16 Baziz, H. A., P. A. Geraert, J. C. F. Padilha and S. Guillaumin. 1996. Chronic heat exposure enhances fat deposition and modifies muscle and fat partition in broiler carcass. Poult. Sci. 75:505-513.   DOI   ScienceOn
17 Borges, S. A., A. V. Fischer da Silva, A. Maiorka, D. M. Hooge and K. R. Cummings. 2004. Effects of diet and cyclic daily heat stress on electrolyte, nitrogen and water intake, excretion and retention by colostomized male broiler chickens. Int. J. Poult. Sci. 3(5):313-321.   DOI
18 Buono, M. J., J. H. Heaney and K. M. Canine. 1998. Acclimation to humid heat lowers resting core temperature. Am. J. Physiol. 274:R1295-R1299.
19 Alleman, F. and B. Leclercq. 1997. Effect of dietary protein and environmental temperature on growth performance and water consumption of male broiler chickens. Br. Poult. Sci. 38:607-610.   DOI   ScienceOn
20 Aoyagi, Y., T. Ohnishi and S. Itoh. 1997. Effect of heat stress and L-ascorbic acid-2-phosphate magnesium on plasma and liver thiobarbituric acid reactive substance concentration and on liver protein carbony concentration in chicks. Jpn. Poult. Sci. 34(1):63-66.   DOI   ScienceOn
21 Howlider, M. A. R. and S. P. Rose. 1987. Temperature and the growth of broilers. World's Poult. Sci. J. 43:228-237.   DOI
22 Austic, R. E. 1985. Feeding poultry in hot and cold climates. In: Stress Physiology in Livestock (Ed. M. K. Yousef). CRC Press, Boca Raton, FL, pp. 123-136.
23 Temim, S., A. M. Chagneau, S. Guillaumin, J. Michael, R. Peresson, P. A. Geraert and S. Tesseraud. 1999. Effects of chronic heat exposure and protein intake on growth performance, nitrogen retention and muscle development in broiler chickens. Reprod. Nutri. Dev. 39:145-156.   DOI   ScienceOn
24 Han, Y. and D. H. Baker. 1993. Effects of sex, heat stress, body weight, and genetic strain on the dietary lysine requirement of broiler chicks. Poult. Sci. 72:701-708.   DOI   ScienceOn
25 Howlider, M. A. R. and S. P. Rose. 1989. Rearing temperature and the meat yield of broilers. Br. Poult. Sci. 30:61-67.   DOI   ScienceOn
26 Leenstra, F. and A. Cahaner. 1991. Genotype by environment interactions using fast-growing, lean or fat broiler chickens, originating from the Netherlands and Israel, raised at normal or low temperature. Poult. Sci. 70:2028-2039.   DOI   ScienceOn
27 Li, S. Y. 1999. Studies on the effect of heat stress on performance and meat quality of broilers and anti-stress effect of riboflavin. Ph. D. Thesis, Chinese Academy of Agricultural Sciences, Beijing.
28 Droge, W. 2002. Free radicals in the physiological control of cell function. Physiol. Rev. 82:47-95.   DOI
29 Furlan, R. L., D. E. de Faria Filho, P. S. Rosa and M. Macari. 2004. Does low-protein diet improve broiler performance under heat stress conditions? Brazilian J. Poult. Sci. 6(2):71-79.
30 Geraert, P. A., J. C. F. Padilha and S. Guillaumin. 1996. Metabolic and endocrine changes induced by chronic heat exposure in broiler chickens: biological and endocrinological variables. Br. J. Nutr. 75:205-216.   DOI   ScienceOn
31 Gonzalez-Esquerra, R. and S. Leeson. 2005. Effects of acute versus chronic heat stress on broiler response to dietary protein. Poult. Sci. 84:1562-1569.   DOI
32 Gu, X. H., R. Du and L. Fang. 1999. Effect of humidity on rectal temperature, plasma $t_3$ and insulin level in broilers under high ambient temperature. Scientia Agricultura Sinica, 32:105-107.
33 Lin, H., H. F. Zhang, R. Du, X. H. Gu, Z. Y. Zhang, J. Buyse and E. Decuypere. 2005b. The thermoregulation response of broiler chickens to humidity at different ambient temperatures I. Four-week-age. Poult. Sci. 84:1173-1178.   DOI
34 Aletor, V. A., I. I. Hamid, E. Nieb and E. Pfeffer. 2000. Low-protein amino acid supplemented diets in broiler chickens: effects on performance, carcass characteristics, whole body composition and efficiencies of nutrient utilization. J. Sci. Food Agric. 80:547-554.   DOI   ScienceOn
35 Lin, H., H. F. Zhang, H. C. Jiao, T. Zhao, S. J. Sui, X. H. Gu, Z. Y. Zhang, J. Buyse and E. Decuypere. 2005a. The thermoregulation response of broiler chickens to humidity at different ambient temperatures I. One-week-age. Poult. Sci. 84:1166-1172.   DOI