• 제목/요약/키워드: Air Heater

검색결과 485건 처리시간 0.025초

수치적 모델링을 통한 이산화탄소 급탕기의 특성 연구 (Studies on Performance of CO2 Water Heater by Numerical Modeling)

  • 박한빛;윤린
    • 설비공학논문집
    • /
    • 제25권1호
    • /
    • pp.20-27
    • /
    • 2013
  • Numerical modeling of $CO_2$ water heater was conducted prior to optimal design of medium and large sized $CO_2$ water heater, and the experimental test with small sized $CO_2$ water heater having heat capacity of 4 kW was completed to verify the present numerical model. The present model estimated the experimental data of COP(coefficient of performance), heating capacity, and the hot water outlet temperature within the range of 3% to 8% of mean deviation. As increase of EEV(electric expansion valve) opening area, decreasing of heating capacity and the hot water outlet temperature, and increasing of COP were found in both experimental and numerical investigation.

대형 석탄화력 발전소에서 통풍계통 안정화를 위한 과잉공기비 조정 (Adjustment of the Excess Air Ratio for Stabilizing the Draft System in a Large Capacity Coal Fired Power Plant)

  • 박건우;유호선
    • 플랜트 저널
    • /
    • 제14권2호
    • /
    • pp.39-44
    • /
    • 2018
  • 본 연구에서는 870 MW 대형 석탄화력 발전소에서 출력을 고정시키고 과잉공기비 조정만으로 통풍계통 안정 및 보일러 효율에 어떠한 변화가 있는지를 분석하였으며 이에 따른 적정 과잉공기비를 선정하였다. 과잉공기비 조정에 따라 공기예열기 압력강하, 유인송풍기 실속여유 등이 변하므로 통풍계통 안정화를 위해 적정 과잉공기비 선정은 반드시 필요하다. 따라서 본 연구에서는 과잉공기비를 통상 운전 값인 1.153에서 운전지침서상의 하한 값인 1.127까지 단계적으로 조정하여 공기예열기 압력강하, 유인송풍기 1차 실속여유, 보일러 효율, 각종 손실 등을 측정하였고 보일러 효율도 동등수준이상으로 유지하면서 통풍계통도 위험수준에서 안전하게 이격시켜 안정화에 기여할 수 있는 적정 과잉공기비를 선정하였다. 적정 과잉공기비는 운전지침서 상의 하한 값인 1.127까지 낮추어 운전하는 것이 바람직하다고 판단된다.

  • PDF

태양열과 재열기를 사용한 VI heat pump의 성능 특성에 관한 연구 (Heating Performance Characteristics of Heat Pump with VI cycle using Re-Heater and Solar-Assisted)

  • 이진국;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제35권6호
    • /
    • pp.25-33
    • /
    • 2015
  • In this study, heating performance of the air-cooled heat pump with vapor-injection (VI) cycles, re-heater and solar heat storage tank was investigated experimentally. Devices used in the experiment were comprised of a VI compressor, re-heater, economizer, variable evaporator, flat-plate solar collector for hot water, thermal storage tank, etc. As working fluid, refrigerant R410A for heat pump and propylene glycol (PG) for solar collector were used. In this experiment, heating performance was compared by three cycles, A, B and C. In case of Cycle B, heat exchange was conducted between VI suction refrigerant and inlet refrigerant of condenser by re-heater (Re-heater in Fig. 3, No. 3) (Cycle B), and Cycle A was not use re-heater on the same operating conditions. In case of Cycle C, outlet refrigerant from evaporator go to thermal storage tank for getting a thermal energy from solar thermal storage tank while re-heater also used. As a result, Cycle C reached the target temperature of water in a shorter time than Cycle B and Cycle A. In addition, it was founded that, as for the coefficient of heating performance($COP_h$), the performance in Cycle C was improved by 13.6% higher than the performance of Cycle B shown the average $COP_h$ of 3.0 and by 18.9% higher than the performance of Cycle A shown the average $COP_h$ of 2.86. From this results, It was confirmed that the performance of heat pump system with refrigerant re-heater and VI cycle can be improved by applying solar thermal energy as an auxiliary heat source.

석유 홴 히터의 난방 능력 고찰 (Investigation of Heating Performance of Kerosene Fan Heater)

  • 김장권;정규조
    • 동력기계공학회지
    • /
    • 제1권1호
    • /
    • pp.51-60
    • /
    • 1997
  • In this paper, we investigated the heating performance and the basic characteristics required for normal combustion of kerosene fan heater. And also the iso-velocity contours and the iso-temperature contours of hot gas discharged from the exit of kerosene fan heater were analyzed. The experiment was carried out with kerosene fan heater attached to the blow-down-type subsonic wind tunnel with a test section of $240mm{\times}240mm{\times}1200mm$. The purpose of this paper was to obtain the basic data for new design from conventional kerosene fan heater. Consequently it was found that (i) the pressure ratio $P_2/P_1$ had a comparatively constant value of 0.844 according to the increase of the revolution of turbo fan, (ii) the primary excess air ratio had a range of $0.84{\sim}1.11$ during normal combustion, and (iii) the heating performance of kerosene fan heater had a range of $1,494{\sim}3,852kcal/hr$.

  • PDF

초음속 연소 실험을 위한 연소식 공기 가열기 출구 유동 조건 실험 연구 (A Study on the Flow Conditions of the Combustion Air Heater Outlet for the Supersonic Combustion Experiment)

  • 이은성;한형석;이재혁;최정열
    • 한국추진공학회지
    • /
    • 제26권1호
    • /
    • pp.88-97
    • /
    • 2022
  • 본 연구에서는 직접 연결식 초음속 연소기의 지상 시험 장치에 고온, 고압 공기 공급을 위한 연소식 공기 가열기를 설계 및 제작하였으며, 목표 설계점 만족 여부를 검증하기 위한 실험을 수행하였다. 연소식 공기 가열기 노즐 출구의 상부 경계, 하부 경계 및 중앙에 쐐기를 설치하여 마하수가 2.0 수준을 만족하는 것을 확인하였으며, 연소실 내부 압력 또한 설계점과 비교하여 만족할만한 수준으로 나타났다. 온도의 경우 열전대의 노출되는 정도와 느린 응답 특성에 의해 측정된 온도의 편차가 크게 나타났다. 이후 연소식 공기 가열기 후방에 격리부를 연결하고 동일한 방법으로 마하수를 측정하였으며, 격리부 출구 중앙의 마하수는 1.8~1.9 정도로 소폭 감소하였다.

기주의 열음향진동에 관한 연구 (A Study on the Thermoacoustic Oscillation of an Air Column)

  • 권영필;이병호
    • 대한기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.253-261
    • /
    • 1987
  • 본 논문에서는 이러한 점들을 보완하여 Fig.1에 도시한 Rijke 관에서 나선형 가열기에 의한 음향력의 발생량을 계산하고 기주진동을 일으키는데 필요한 가열량을 계산하고 기주진동을 일으키는데 필요한 가열량을 구하였다. 이론을 뒷받침하기 위 하여 실험을 하고 결과를 비교 검토하였다.

고온 고압 공기가열기 성능시험 (Performance Test of Vitiated Air Heater with High Temperature and High Pressure)

  • 이정민;나재정;홍윤기;김정우
    • 한국추진공학회지
    • /
    • 제22권4호
    • /
    • pp.68-75
    • /
    • 2018
  • 본 연구는 설계된 고온 고압 연소식 공기가열기의 성능을 확인하기 위한 성능시험과 그 결과분석에 대한 것이다. 총 4가지의 시험조건에 대한 시험과 3가지 조건에 대한 레이크 측정 시험이 수행되었다. 성능시험결과 목표 온도와 공급 유량조건을 모두 만족하였으며, 최대 공급온도 2000 K, 최대 연소압력 40 bar의 조건을 만족하였다. 공급된 메탄의 유량은 이론값보다 최대 36% 증가하였으며, 측정된 온도는 이론적으로 계산된 온도보다 최대 19.6%의 차이를 보였다.

히트파이프를 이용한 온풍난방기 배기열회수 시스템의 열회수 특성 (Heat Recovery Characteristics of the Exhaust Heat Recovery System with Heat Pipe Unit Attached to the Hot Air Heater in the Greenhouse)

  • 강금춘;김영중;유영선;백이;이건중
    • Journal of Biosystems Engineering
    • /
    • 제26권5호
    • /
    • pp.441-448
    • /
    • 2001
  • Hot air heater with light oil combustion is used as the most common heater for greenhouse heating in the winter season. However, exhaust gas heat discharged to atmosphere through chimney reaches up to 10~20% of total heat capacity of the oil burred. In order to recover the heat of this exhaust gas and to use for greenhouse heating, the heat pipe type exhaust heat recovery system was manufactured and tested in this experiment. The system consisted of a heat exchanger made of heat pipes, ø15.88${\times}$600mm located in the rectangular box of 675(L)${\times}$425(W)${\times}$370(H)mm, an air suction fan and air ducts. The number of heat pipe was 60, calculated considering the heat exchange amount between exhaust gas and air and heat transfer capacity of a heat pipe. The working fluid of heat pipe was acetone because acetone is known for its excellent heat transfer capacity. The system was attached to the exhaust gas path. According to the performance test it could recover 53,809 to 74,613kJ/h depending on the inlet air temperature of 12 to -12˚at air flow rate of 1.100㎥/h. The temperature of the exhaust gas left the heat exchanger dropped to 100$^{\circ}C$ from 270$^{\circ}C$ after the heat exchange between the suction air and the exhaust gas.

  • PDF

DME를 이용한 농업용 온풍기와 발전기의 성능 및 배출가스 특성 연구 (Performance and Emissions Characteristics of Agricultural Generator and Air Heater using DME Fuel)

  • 김신;민경일;박천규;이현찬;나병기
    • 한국수소및신에너지학회논문집
    • /
    • 제27권4호
    • /
    • pp.431-440
    • /
    • 2016
  • Electric or hydrogen energy source is expected to solve a various issues including energy security and exhaust pollution. However, it is required a lot of time and a variety of development to apply for commercialization. Therefore, it is needed to translation fuels between the future and the present. DME (Dimethyl Ether) can play a reduce exhaust emission from medium- to heavy-duty engines that are mostly used in commercial sector. It have applied to the DME fuel as a various alternative fuel including power generation in many countries. Especially, it is necessary to secure the energy of energy-poor areas that are widely distributed around the world. And Korea also has the energy-poor areas due to geographical characteristics. These areas has been covered by their own energy through some small diesel generators, diesel boiler etc. If DME fuels are supplied in new demand such as rural sector with energy poor area, DME fuel will be available in the wider sector. In this study, it investigated performance and emission characteristics of agricultural generator and air heater using DME fuel. So the existing equipment of generator and air heater was modified to apply DME fuel. And combustion characteristics and properties of exhaust gas according to the contents of the DME fuel were evaluated. DME fuel showed a potential application in agricultural generator and air heater.

자동차 후면 유리 열선의 열전달특성에 따른 성애제거 성능평가 및 성능검증 방법에 관한 연구 (A Study on the Performance Test and Verification of Heat Transfer characteristics in Automobile Rear Window Heater)

  • 전환영;이찬규;배효준;이상재
    • 동력기계공학회지
    • /
    • 제9권2호
    • /
    • pp.73-80
    • /
    • 2005
  • Both theoretical and experimental investigations were conducted to analyze defrosting behavior of a window heater operating in the low outdoor temperature($-20^{\circ}C$). To achieve this purpose, first a warm-chamber experiment($23^{\circ}C$) was performed to measure inner and outer surface temperature of the rear window(heated by the electric heater supplying 195 W) as functions of both time and position. Secondly, a cold chamber experiment was made to continuously record defrosting process of the frosted window. From the comparisons of the two experimental results, it was found that there was a similarity between the spatial distributions of both temperature and remaining frost. Thus, the temperature data from the warm-chamber experiments can be utilized to predict an expected zone covered with remaining frosts, and this approach can also be adopted in the inspection process in order to economically guarantee optimized performance of the window heater. Finally, an analytical model based on one-dimensional, steady-state heat transfer theories was proposed and successfully predicted the outer surface temperature of the rear window surrounded by cold air($-20^{\circ}C$) for the given operating conditions(heater power, inside and outside heat transfer coefficients, and surrounding air temperature, etc.).

  • PDF