• Title/Summary/Keyword: Air Gap Winding

Search Result 104, Processing Time 0.018 seconds

Fault diagnosis system of the short circuit conditions in windings for synchronous generator (동기발전기 권선단락사고 고장진단 시스템)

  • Jang, Nakwon;Lee, SungHwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.520-526
    • /
    • 2013
  • As the increasing of capacity and technology of power facilities, rotating machines are getting higher at capacity and voltage scale. Thus the monitoring and diagnosis of generators for fault detection has attracted intensive interest. In this paper, we developed fault diagnosis system for monitoring the fault operations in bad power systems. In order to verify the performance of this fault diagnosis system, we made the small scaled testing system which has the same winding structure of the real synchronous generator. The magnetic flux patterns in air-gap of a small-scale generator under various fault states as well as a normal state are tested by hall sensors and the fault detection system.

The Design of Rotor Bars of Single-Phase Line-Start Permanent Magnet Motor for Improving Starting Characteristics (단상 유도동기전동기의 기동 특성 개선을 위한 회전자 바 형상 설계)

  • Lee Chul-kyu;Kwon Soon-hyo;Yang Byung-yull;Kwon Byung-il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.8
    • /
    • pp.370-376
    • /
    • 2005
  • The single-phase induction motor is simple and durable, but the efficiency is low. Therefore, electric motors like HLDC and LSPM(line-start permanent magnet motor) that use the permanent magnet have been studied. The most advantages of single-phase LSPM is having the same stator as the stator of the single-phase induction motor and permanent magnets are just inserted in the squirrel cage rotor of the single-phase induction motor. But the characteristics of single-phase LSPM synchronous motor has very complex characteristics until the synchronization and if the design is not suitable, the single-phase LSPM synchronous motor cannot be synchronized. We designed a single-phase LSPM using the same stator and winding as the conventional single-phase induction motor, but newly designed the permanent magnets considering air gap magnetic flux density. The transient characteristics of the single-phase LSPM is not good because of a magnetic breaking torque, however, it can be improved by redesigning the rotor bars. We are proposed the design method of rotor bar for the single-phase LSPM to start softly and to make synchronization easily.

Fabrication and test of 100 hp High Tc Superconducting Motor (100마력 고온초전도 모터 제작과 평가(I))

  • Sohn M.H.;Baik S.K.;Lee E.Y.;Kwon Y.K.;Kwon W.S.;Moon T.S.;Park H.J.;Kim Y.C.;Cho C.H.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1118-1120
    • /
    • 2004
  • For the first time in Korea, a 100hp high Tc superconducting(HTS) motor has been designed, developed and successfully tested recently. The design was based on 2-dimensional electromagnetic field analysis of cylindrical coordinate. The field winding of rotor was wound with Bi-2223 tapes and tested after assembled with other rotor components. The stator had air-gap type armature windings which allow higher terminal voltage and more sinusoidal voltage waveform than conventional iron cored machines. Steady state open & short-circuit test and resistive load test were conducted also in generator mode. The fabrication and test results of this machine were discussed in this paper.

  • PDF

High Efficient Inductive Power Supply System Implemented for On Line Electric Vehicles

  • Huh, Jin;Park, Eun-Ha;Jung, Gu-Ho;Rim, Chun-Taek
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.105-110
    • /
    • 2009
  • The On Line Electric Vehicles(OLEV) that can pick up inductive power from underground coils on driving with high efficiency have been developed this year, and is now proposed in this paper. The IPS(Inductive Power Supply) system consists of power supply inverters, power supply rails, pick up modules, and a regulator. There are 3 generations of IPS have been developed so far, and the $4^{th}$ generation IPS is being developed. The $1^{st}$ generation has been demonstrated this Feb. 27, which is equipped with mechanically auto tracking pick-up module with 1cm air gap, and showed 80% power efficiency. The $2^{nd}$ generation IPS applied to an 120kW (average)/240kW(peak) motor powered electric bus has 17cm air gap with 72% power efficiency. For the $2^{nd}$ generation IPS, the Power supply inverter has 440V, 3phase input and 200A @ 20kHz output. The test power supply rail of 240m long is segmented by 60m each, where newly developed core structure and power cable are constructed under the road covered with asphalt of 5cm thickness. The pick-up modules which consist of core, winding wire, and rectifiers are fixed to the bottom of the bus which can carry more than 40 passengers and can pick up max. 60kW. To remove parasitic component and to transfer maximum power between them resonant circuit topology is applied to the primary and secondary sides. The EMF level is below 62.5mG at 1.75m from the center of the road to meet the regulation. Several effective ways of reducing EMF levels have been developed. In addition, effective ways to solve problems related high frequency power cables buried in ground and it's proof from soil have been studied also. This development shows that the IPS system is capable of supplying enough power to the pick-up of OLEV and can reduce battery size, weight and cost, which means the IPS with OLEV is one of the best candidate for EV.

  • PDF