• Title/Summary/Keyword: Air Gap Winding

Search Result 104, Processing Time 0.019 seconds

Power Loss Calculation of High Frequency Transformers

  • Choi Geun-Soo;Yoon Shin-Yong;Baek Soo-Hyun;Kim Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.338-342
    • /
    • 2006
  • This paper analyzed the power loss of transformers considering the magnetic component. For this, each winding strategy and the effect of air gap between the ferrite core have been an important variable for optimal parameter calculation. Inductors are very well known design rules to devise, but the performance of the flyback converter as a function of transformer winding strategy has not been fully developed. The transformer analysis tool used was PExpert. The influence of the insulator thickness, effect of the air gap, how the window height and variation of the capacitive value effects the coil and insulator materials are some of parameters that have been analyzed in this work. The parameter analysis is calculated to a high frequency of 48[kHz]. Therefore, the final goal of this paper was to calculate and adjust the parameters according to the method of winding array and air gap minimizing the power loss.

Air-gap Control According to Y and Delta Connections of Double-sided Air-gap Permanent Magnet Synchronous Motor with Independent Three-phase Structure (독립 3상 구조를 갖는 이중공극형 영구자석 동기전동기의 Y 및 Delta 결선에 따른 공극제어)

  • Heo, Chan-Nyeong;Hwang, Seon-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.249-255
    • /
    • 2017
  • This paper presents air-gap control according to Y and Delta connections of a double-sided air-gap permanent magnet synchronous motor (DA-PMSM) with independent three-phase structure. In particular, the DA-PMSM used in this study can be applied to low-speed and high-torque applications, such as wind turbines, tidal power generations, and electric propulsion ships, because of its modular stators and a rotor with numerous permanent magnets. Unlike conventional three-phase machines, the DA-PMSM has a symmetrical configuration with double-sided air-gap. Therefore, Y/Delta winding connections and serial/parallel configurations between stator modules are possible. To identify the DA-PMSM operating characteristics, mathematical modeling is analyzed according to the Y/Delta connections. Moreover, air-gap control performances by applying the winding connection methods are verified through experimental results.

Analysis on Air-Gap Magnetic Flux of Synchronous Generator According to Short-Circuit Types in Winding (권선단락 유형별 동기발전기의 공극자속 파형 분석)

  • Bae, Duck-Kweon;Kim, Dong-Hun;Park, Jung-Shin;Lee, Dong-Young;Lee, Sung-Ill
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.929-935
    • /
    • 2009
  • As modem industrialized society progresses, the demand for electric power is increasing rapidly. The electric power system is getting amazingly bigger and complicated, which can easily induce serious troubles from the potential of large fault problems and/or system failure. The monitoring and diagnosis of the electric machine for the fault detection and protection has been important part in the electric power system. Most faults in the generator appear in the winding. This paper presents the air-gap magnetic flux characteristic of a small-scale 2-pole synchronous generator according to the faults in the field winding to protect the generator from the fault. The magnetic flux patterns in air-gap of a generator under various fault conditions as well as a normal state are simulated by using finite element method. These results are successfully applied to the detection and diagnosis of the short-circuit condition in rotor windings of a high capacitor generator.

Study on Transformer and Inductor Using Equivalent Air gap to Partial Flux Saturation (국부적 자속 포화 현상을 이용한 리엑터 및 변압기의 공극 등가 모델에 관한 연구)

  • Park, Sung-Jun;Lee, Sang_Hun;Kim, Jeong-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.3
    • /
    • pp.103-112
    • /
    • 2014
  • BY the Transformers and reactors, the input electrical energy is converted into magnetic energy. At the end through the magnetic energy was passed at the output parameter. Specially At the flyback transformer or a reactor airgap were designed to contain more magnetic energy. But that work is very difficult for the optimal design. It is that Contradictions are between the length of the Air-gap, Winding inductance, DC bias. As to e Several conflicting conditions in order to determine the optimum Air-gap has a lot of experience and trial & error is necessary. The approach proposed in this paper, the auxiliary winding on the core attached to part of primary core, that by applying a DC voltage has a dramatic effect like Core with designed Air-gap. This inventiveness and advantage is to regulate arbitrarily the Saturation Flux Quantity by the input signal to secondary winding. Accordingly obtained the biggest effect is that increasing limits of the saturation current destined by the material and shape of the conventional core. In other words, that can decreas the size of the transformer and reactor, While maintaining the current saturation capacity. This paper, prove its effect as using the local flux saturation in transformers and reactors for research by the computer program using the finite element method (FEM) simulation, followed by actual experiment to verify

A Study on the Transformer Design considering the Inrush Current Reduction in the Arc Welding Machine

  • Kim, In-Gun;Liu, Huai-Cong;Cho, Su-Yeon;Lee, Ju
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.374-378
    • /
    • 2016
  • The transformer used in an inverter type arc welding machine is designed to use high frequency in order to reduce its size and cost. Also, selecting core materials that fit frequency is important because core loss increases in a high frequency band. An inrush current can occur in the primary coil of transformer during arc welding and this inrush current can cause IGBT, the switching element, to burn out. The transformer design was carried out in $A_P$ method and amorphous core was used to reduce the size of transformer. In addition, sheet coil was used for primary winding and secondary winding coil considering the skin effect. This paper designed the transformer core with an air gap to prevent IGBT burnout due to the inrush current during welding and proposed the optimum air gap length.

A Computational Analysis of Air Entrainment with a Nip Roller

  • Lee, Jae-Yong;Chang, Young-Bae;Shelton, John J.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2002.11a
    • /
    • pp.81-90
    • /
    • 2002
  • Air entrainment of a winding roll with a nip roller was studied numerically. The amount of air entrainment between two rotating rollers was obtained by solving lubrication equation, Reynolds equation, which neglect the existence of a web. However, the numerical model of this study included the web existence, therefore it considered the two lubricating air films between a winding roll and a web and also between a nip roller and the web. The pressure profiles and gap profiles of the two films were obtained by solving lubrication equation for the two air films and force balance equation of the web. Ballooning phenomenon was examined in terms of nip force, wrap angle, web stiffness, web speed, and web tension. This ballooning phenomenon caused by the back flow of the air film blocked by the nip roller. Air entrainment of the two numerical models was compared.

  • PDF

A study on the characteristics analysis of L.I.M. considering space harmonics (공간 고조파를 고려한 L.I.M.의 특성해석에 관한 연구)

  • Lim, Dal-Ho;Kim, Gyu-Tak;Kim, Youn-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.325-328
    • /
    • 1988
  • Until now to analysis of LIM first winding current distribution is assumed to be finite sinusoidal current. But this method have demerits to learn the difference of LIM's characteristics which is produced by difference of winding method. So in this paper amodel of which period is the length core and air gap mmf of this winding current developed to fourier series, then mmf which contain air gap mmf is obtained this mmf is transformed to current sheet and the analysis result which are obtained by using sinusoidal first current and proposed method are compared.

  • PDF

A Method for Indentifying Broken Rotor Bar and Stator Winding Fault in a Low-voltage Squirrel-cage Induction Motor Using Radial Flux Sensor

  • Youn, Young-Woo;Hwang, Don-Ha;Sun, Jong-Ho;Kang, Dong-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.666-670
    • /
    • 2011
  • In this paper, a method for detecting broken rotor bar and stator winding fault in a low voltage squirrel-case induction motor using an air-gap flux variation analysis is proposed to develop a simple and low cost diagnosis technique. To measure the leakage flux in radial direction, a radial flux sensor is designed as a search coil and installed between stator slots. The proposed method is able to identify two kinds of motor faults by calculating load condition of motors and monitoring abnormal signals those are related with motor faults. Experimental results obtained on 7.5kW three-phase squirrel-cage induction motors are discussed to verify the performance of the proposed method.

A Study on Flux Sensing of Linear Induction Motor Using Tapped Winding (Tapped winding을 이용한 선형유도전동기의 자속검출에 관한 연구)

  • Im, Dal-Ho;Kwon, Byung-Il;Kim, Chang-Eob;Im, Hyung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.948-950
    • /
    • 1993
  • A method of flux sensing using tapped winding is described for measuring air gap flux in linear induction motor. This method which utilizes coils of motor itself is neither affected by temperature nor resistive voltage drop due to stator current in the motor coils. So it can measure air gap flux in reliable manner. The tapped wilding method has been implemented in experiment and the result shows that this method can be sufficiently used in direct vector control of linear induction motor.

  • PDF

An Improved High Efficiency Resonant Converter for the Contactless Power Supply with a Low Coupling Transformer (낮은 커플링 변압기를 갖는 비접촉 전원의 개선된 고효율 공진 컨버터)

  • Kong Young-Su;Kim Eun-Soo;Lee Hyun-Kwan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.1
    • /
    • pp.33-39
    • /
    • 2005
  • Comparing with the conventional transformer without the air gap, a contactless transformer with the large air gap between the long primary winding and the secondary winding has increased leakage inductance and reduced magnetizing inductance. For transferring the primary power to the secondary one, the high frequency series resonant converter has been widely used for the contactless power supply system with the large air gap and the increased leakage inductance of the contactless transformer However, the high frequency series resonant converter has the disadvantages of the low efficiency and high voltage gain characteristics in the overall load range due to the large air gap and the circulating magnetizing current. In this paper, the characteristics of the high efficiency and unit voltage gain are revealed in the proposed three-level series-parallel resonant converter. The results are verified on the simulation based on the theoretical analysis and the 5kW experimental prototype.