• Title/Summary/Keyword: Air Flow Control

Search Result 1,022, Processing Time 0.029 seconds

Characteristics of Fluidized Bed Type Gasification of Kideco Coal (키데코탄의 유동층 가스화 반응 특성)

  • Bae, Dal-Hee;Jo, Sung-Ho;Shun, Do-Won;Moon, Young-Sub
    • Journal of Energy Engineering
    • /
    • v.16 no.1 s.49
    • /
    • pp.32-39
    • /
    • 2007
  • Coal pyrolysis processes vary with the origin and rank of coal. It is difficult to generalize the characteristics of coal pyrolysis reaction because the process consists of numerous reactions including pyrolysis, gasification, and combustion. To find out the optimum process condition it is necessary to determine the condition fur each coal from the smatter scale experiment. In this study pressurized ($2kg_{f}/cm^{2}$) fluidized bed, low temperature ($735{\sim}831^{\circ}C$) gasification using Kideco coal was performed. The reaction condition and product gas composition were determined from the variables including steam flow rate, coal feed rate and air flow rate. Optimum reaction condition was determined from the concentrations of $H_{2}$, and CO in the product gas. The ratio of air/coal was 4.45 and that of steam/coal was 0.21 respectively. The concentrations of CO and $H_{2}$ decreased with the increase of $CO_{2}$. It is important to control the feed rates of coal and steam because the reaction temperature rapidly increased when the combustion reaction dominates over the gasification reaction. The concentrations of CO and $H_{2}$ were 18%, 17% respectively from the continuous operating condition.

Effect of Pipes Layout and Flow Velocity on Temperature Distribution in Greenhouses with Hot Water Heating System (방열관의 배치와 관내 유속이 온수난방 온실의 온도분포에 미치는 영향)

  • Shin, Hyun-Ho;Kim, Young-Shik;Nam, Sang-Woon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.335-341
    • /
    • 2019
  • In order to provide basic data for uniformization of temperature distribution in heating greenhouses, heating experiments were performed in two greenhouses with a hot water heating system. By analyzing heat transfer characteristics and improving pipes layout, measures to reduce the variation of pipe surface temperature and to improve the uniformity were derived. As a result of analyzing the temperature distributions of two different greenhouses and examining the maximum deviation and uniformity, it was found that the temperature deviation of greenhouses with a large amount of hot water flow and a short heating pipe was small and the uniformity was high. And it was confirmed that the temperature deviation was reduced and the uniformity was improved when the circulating fan was operated. The correlation between the surface temperature of the heating pipe and the indoor air temperature was a positive correlation and statistically significant(p<0.01) in both greenhouses. It was confirmed that the indoor temperature distribution in a hot water heating greenhouse was influenced by the surface temperature distribution of heating pipe, and the uniformity of indoor temperature distribution could be improved by arranging the heating pipe to minimize the temperature deviation. Analysis of the heat transfer characteristics of heating pipe showed that the temperature deviation increased as the pipe length became longer and the temperature deviation became smaller as the flow rate in pipe increased. Therefore, it was considered that the temperature distribution and the uniformity of environment in a greenhouse could be improved by arranging the heating pipe to shorten the length and controlling the flow velocity in pipe. In order to control the temperature deviation of one branch pipe within $3^{\circ}C$ in the tube rail type hot water heating system most used in domestic greenhouses, when the flow velocity in the pipe is 0.2, 0.4, 0.6, 0.8, $1.0m{\cdot}s^{-1}$, the length of a heating pipe should be limited to 40, 80, 120, 160, 200m, respectively.

Theoretical Bases and Technical Application of Breathing Therapy in Stress Management (스트레스 관리 시 호흡치료의 이론적 근거와 기법 적용)

  • 이평숙
    • Journal of Korean Academy of Nursing
    • /
    • v.29 no.6
    • /
    • pp.1304-1313
    • /
    • 1999
  • Breathing is essential for life and at the same time takes a role as a antidote for stress. In the Orient, it was recognized early that respiration, mind, and body have a relation that is inseparable and therefore proper breathing is so important. However, since the mechanism of therapeutic effect by breathing have not been verified, the treatment has been continued till recent years. From that which originated in the Orient, several techniques in the west have been developed to regulate breathing, and have been applying to the clinical situation and to studies, however scientific studies are still lacking. Recently, relaxed breathing has been used as an efficient strategy for breathing therapy as it has an effect on reducing physiological tension and arousal, and, therefore can be used as a basic technique to control or manage stress. In this study, in order to provide basic information and guidelines for clinical application, which will aid in the application of the theoretical basics of breathing therapy and its technique, a review of the literative was conducted. The findings are as follows: 1. Since proper breathing not only has, physically, the important function in supplying oxygen to the body but also gives a good emotional, or pleasant state of mind, it is the first step in controlling physical and mental health. 2. The basic types of breathing can be classified into two types; ‘diaphragmatic breathing(relaxed breathing)’ and ‘chest breathing(stress breathing)’. In yoga type breathing, there are four kinds of breathing, ‘upper breathing’, ‘mid breathing’, ‘down breathing’, and ‘complete breathing’. 3. The theoretical explanation of the positive thera peutic effect of breathing therapy techniques exemplifies good brain function, sufficient air flow through the nasal passages, diaphragmatic movement, light vagal stimulation, CO2 changes and cognitive diversion but in most studies, the hypothesis of CO2 is supported. 4. The technique of breathing is designated with many names according to the muscles and techniques used for breathing, and for control of stress, diaphragmatic breathing(relaxed breathing) is explained as a basic technique best used to manage of stress. 5. The relaxed-breathing includes slow diaphragmatic breathing, breath meditation, nasal breathing, yogic abdominal breathing, Benson's relaxed response, and quiet response.

  • PDF

A Numerical Case Study Examining the Orographic Effect of the Northern Mountain Complex on Snowfall Distribution over the Yeongdong Region (북한 지역의 산맥군이 영동 지역의 겨울철 강설 분포에 미치는 영향에 관한 수치 연구)

  • Lee, Jae Gyoo;Kim, Yu Jin
    • Atmosphere
    • /
    • v.19 no.4
    • /
    • pp.345-370
    • /
    • 2009
  • Numerical experiments using the Weather Research and Forecasting (WRF) model were done to identify the role of the mountain ranges in the northern part of the Peninsula (referred as "the northern mountain complex"), in the occurrence of two heavy snowfall events over the Yeongdong region on 7-8 December 2002 and 20-21 January 2008. To this end, control simulations with the topography of the northern mountain complex and other simulations without the topography of the mountain complex were performed. It was revealed that the amount of snowfall over the Yeongdong region from the control simulation much more exceeded that of the simulation without the topography of the mountain complex. This increase of the snowfall amount over the Yeongdong region can be explained as follows: As the upstream flow approached the northern mountain complex, it deflected around the northern mountain complex due to the blocking effect of the mountains with a low Froude number less than ~0.16. This lead to the strengthening of northeasterly over the East Sea and over the Yeongdong region. The strong northeasterly is accompanied with much more snowfall over the Yeongdong region by intensifying air-mass modification over the sea and the orographic effect of the Taeback mountains. Thus, it was concluded that the topography of the northern mountain complex is one of the main factors in determining the distribution and amount of precipitation in the Yeongdong region when there is an expansion of the Siberian High toward the East Sea.

Design and Performance Tests of a Cryogenic Blower for a Thermal Vacuum Chamber (열진공 챔버용 극저온 블로워 설계 및 성능평가)

  • Seo, Heejun;Cho, Hyokjin;Park, Sungwook;Moon, Gueewon;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.1008-1015
    • /
    • 2015
  • Thermal vacuum test should be performed prior to launch to verify satellites' functionality in extremely cold/hot temperatures and vacuum conditions. A thermal vacuum chamber used to perform the thermal vacuum tests of a satellite system and its components. A cryogenic blower is a core component of the gaseous nitrogen (GN2) closed loop thermal control system for thermal vacuum chambers. A final goal of this research is development of cryogenic blower. Design requirements of a blower are 150 CFM flow rate, 0.5 bara pressure difference, hot and cold temperatures. This paper describes the performance analysis of impeller by 1D, CFD commercial software, the design of the thermal protection interface between the driving part and the fluid part. The performance of the cryogenic blower is confirmed by test at the standard air condition and is verified by on the thermal vacuum chamber at the real operating condition.

Development of Test Stand for Altitude Test of Reciprocating Engine (왕복동 엔진의 고도성능시험을 위한 시험장치 개발)

  • Lee, Kyung-Jae;Yang, Inyoung;Kim, Chun Taek;Kim, Dongsik;Baek, Cheulwoo;Yang, Gyaebyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.119-127
    • /
    • 2018
  • A test stand for an altitude test of reciprocating engine was designed, manufactured and validated by preliminary tests and simple calculations. The test stand was designed to interface with the altitude turbo-shaft engine test facility of Korea Aerospace Research Institute. Many limiting conditions for altitude test of reciprocating engine were assumed and the test stand was developed to satisfy these limitations. The test stand design was focused especially on the altitude, Mach number and fuel temperature control for reciprocating engine altitude tests with smaller air and fuel flow than those of turbo shaft engines.

A Study for Improving Properties of Antiwashout Underwater Concrete Mixed with Mineral Admixtures (광물질 혼화재를 혼합한 수중불분리성 콘크리트의 물성 향상을 위한 연구)

  • 문한영;신국재;이창수
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.409-419
    • /
    • 2002
  • Nowadays, antiwashout underwater concrete is widely used for constructing underwater concrete structures but they, especially placed in marine environment, can be easily attacked by chemical ions such as SO$\^$2-/$\_$4/ Cl$\^$-/ and Mg$\^$2+/, so the quality and capability of concrete structures go down. In this paper, to solve and improve those matters, flyash and GGBFS(ground granulated blast furnace slag) were used as partial replacements for ordinary portland cement. As results of experiments for fundamental properties of antiwashout underwater concrete containing 10, 20, 30% of flyash and 40, 50, 60 % of GGBFS respectively, setting time, air contents, suspended solids and pH value were satisfied with the "Standard Specification of Antiwashout Admixtures for Concrete" prescribed by KSCE, and also slump flow, efflux time and elevation of head were more improved than that of control concrete. From the compressive strength test, it was revealed that the antiwashout underwater concrete containing mineral admixtures(flyash and GGBFS) is more effective for long term compressive strength than control concrete. An attempt to know how durable when they are under chemical attack has also been done by immersing in chemical solutions that were x2 artificial seawater, 5 % sulphuric acid solution, 10%, sodium sulfate solution and 10% calcium chloride solution. After immersion test for 91days, XRD analysis was carried out to investigate the reactants between cement hydrates and chemical ions and some crystalline such as gypsum ettringite and Fridel′s salt were confirmed.

A Fundamental Test of Temperature Crack Reduction Method Application by Setting Time Control of Large-Scaled Mat Foundation Mass Concrete (초대형 매트기초 매스 콘크리트의 응결시간조정에 의한 온도균열저감 공법적용의 기초적 실험)

  • Han, Cheon-Goo;Lee, Jae-Sam;Noh, Sang-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.3
    • /
    • pp.95-101
    • /
    • 2009
  • Constructing large-scale mat foundation mass concrete is increasing for the stability of building structure, because a lot of high rise building are being built in order to make full use of limited space. However, It is of increasing concerns that because limited placing equipments, available job-site and systems for mass concete placement in construction field do not allow to place great quantity of concrete at the same time in large scale mat foundation, consistency between placement lift can not be secured. And also, it is likely to crack due to stress caused by the difference of hydration heat generation time. To find out the solution against above problems, this study is to reconfirm the performance of normal concrete designed by mix proportion and super retarding concrete. The Fundamental test shows what happens if low heat proportioning and control method of setting time are applied at the job-site of newly constructed high rise building. The test result show that slump flow of concrete has been somewhat increased as the target retarding time gets longer, while the air content has been slightly decreased but this is no great difference from normal concrete. The setting time shows to be retarded as target retarding time gets longer, the range of retarding time increases. It is necessary to increase the amount of mix of super retarding agent in the proportion ration by setting curing temperature high since outdoor curing is about 6 hours faster than standard curing, which means the temperature of the concrete will be higher than the temperature of the surrounding environment, due to its high hydration heat when applying in a construction site. The compressive strength of super retarding concrete appears to be lower than normal concrete due to the retarding action in the early stage. However, as the time goes by, the compressive strength gets higher, and by the 28th day the strength becomes the same or higher than normal concrete.

The Decrease of Return Temperature by Improvement of the Consumer's Control System in District Heating (지역난방 열사용시설 자동제어시스템 개선을 통한 회수온도 저감 연구)

  • Ha, Seung-Kyu;Kim, Youn-Hong;Lee, Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.245-251
    • /
    • 2006
  • The main idea of this study is to turn attention on the question of good cooling ability of customer substations in large district heating networks. The main reason for that is based on our experience that the optimization of district heating very often is directed toward production, whereas questions of optimal distribution are neglected if only the necessary load can be supplied and the customer's request for comfort is met. Our view is that low return temperature(operational temperature differences, ${\Delta}T$) in district heating systems is an Important feature for efficient net operation and gives both economic and operational benefits to the district heating supplier Furthermore, it is as well a prerequisite for meeting the customers demand for reliable supply of the heat load. However, in many practical cases we have seen that district heating return temperatures are higher than necessary. Hence, the aim of the study is to propose and verify a method for detection of the most critical consumers of the net and to identify the reasons for resulting high return temperature. From the results, temperature control system is presented as one of the most important reason of high return temperature in DH networks.

  • PDF

Analysis of Heat Emission from Hot Water Pipe for Greenhouse Heating System Design (온실 난방시스템 설계를 위한 온수난방배관의 방열량 분석)

  • Shin, Hyun-Ho;Nam, Sang-Woon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.204-211
    • /
    • 2019
  • The purpose of this study is to provide basic data for setting environmental design standards for domestic greenhouses. We conducted experiments on thermal environment measurement at two commercial greenhouses where hot water heating system is adopted. We analyzed heat transfer characteristics of hot water heating pipes and heat emission per unit length of heating pipes was presented. The average air temperature in two greenhouses was controlled to $16.3^{\circ}C$ and $14.6^{\circ}C$ during the experiment, respectively. The average water temperature in heating pipes was $52.3^{\circ}C$ and $45.0^{\circ}C$, respectively. Experimental results showed that natural convection heat transfer coefficient of heating pipe surface was in the range of $5.71{\sim}7.49W/m^2^{\circ}C$. When the flow rate in heating pipe was 0.5m/s or more, temperature difference between hot water and pipe surface was not large. Based on this, overall heat transfer coefficient of heating pipe was derived as form of laminar natural convection heat transfer coefficient in the horizontal cylinder. By modifying the equation of overall heat transfer coefficient, a formula for calculating the heat emission per unit length of hot water heating pipe was developed, which uses pipe size and temperature difference between hot water and indoor air as input variables. The results of this study were compared with domestic and foreign data, and it was found to be closest to JGHA data. The data of NAAS, BALLS and ASHRAE were judged to be too large. Therefore, in order to set up environmental design standards for domestic greenhouses, it is necessary to fully examine those data through further experiments.