• Title/Summary/Keyword: Air Flow Control

Search Result 1,022, Processing Time 0.025 seconds

A new approach to structuring the process based on design structure matrix (DSM) (DSM 기반의 프로세스 구조화 방법론)

  • Seol, Hyeon-Ju;Kim, Chul-Hyun;Lee, Chang-Yong;Park, Yong-Tae
    • Journal of Korean Society for Quality Management
    • /
    • v.37 no.3
    • /
    • pp.39-53
    • /
    • 2009
  • This paper suggests a new process structuring method, which we call process modularization, for decomposing and grouping activities in a process. Above all, we propose the concept of a module that is a group of activities positioned on the same flow before and after control constructs. Since activities in a module are relatively strongly interrelated with one another, it is important to take into consideration of these together. A design structure matrix (DSM) is used to structure the process because it has a lot of advantages in process modeling and analysis. We developed two algorithms: the restricted topological sorting (RTS) algorithm for ordering activities and the module finding (MF) algorithm for detecting modules in a process, which utilize the DSM. The suggested approach enables a firm's manager to design and analyze the process effectively. We also developed a supporting tool to accelerate the progress of process modularization. The supporting tool aids the process manager in finding the module and understanding the process structure easily. An illustrative example is addressed to show operations of the suggested approach.

A Study on Air Flow Analysis in Vertical-axis Wind Turbine (수직축 풍력터빈의 유동해석에 관한 연구)

  • Lee, Ki-Seon;Park, Jung-Cheul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.158-162
    • /
    • 2017
  • This paper did basic study on the vertical-axis wind turbine. Namely, This paper was try to find the optimum conditions by using the ANSYS CFX simulation program through the changes of the main-blade angle and sub-blade angle. Main-blade Shape #4 angle $45^{\circ}$ compared to others Shape angle $0^{\circ}$ was increased by 157.2[%] to 263.2[%] in the power output and was increased by 110[%] to 250[%] in the power coefficient. Also, when the Shape #5 Fin length of main-blade doubles, because the power output was 70.8[%] compared to Shape #1 and 27.5[%] compared to Shape #4, and the power coefficient was 60[%] compared to Shape #1 and 28.6[%] compared to Shape #4, the power output and the power efficiency were rather reduced. The output current of Shape #4 was increased 109.9[%] compared to Shape #1 and increased 250[%] compared to Shape #5, and The output voltage of Shape #4 was increased 22.5[%] compared to Shape #1 and increased 3.7[%] compared to Shape #4.

A Study on the Noise and Vibration Path of Hermetic Rotary Compressor by SEA (통계적 에너지 해석 기법에 의한 밀폐형 회전 압축기의 소음진동 전달경로 해석)

  • Hwang, Seon-Woong;Ahn, Byung-Ha;Jeong, Hyeon-Chul;Jeong, Weui-Bong;Kim, Kyu-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.869-874
    • /
    • 2002
  • Hermetic rotary compressor is one of the most important components for air conditioning system since it has a great effect on both the performance and the noise and vibration of the system. Noise and vibration of rotary compressor is occurred due to gas pulsation during compression process and unbalanced dynamic force. In order to reduce noise and vibration, It is necessary to identify sources of noise and vibration and effectively control them. Many approaches have been tried to identify noise sources of compressor. However, compressor noise source identification has proven to be difficult since the characteristics of compressor noise are complicated due to the interaction of the compressor parts and gas pulsation. In this work, Statistical Energy Analysis has been used to trace the energy flow in the compressor and identify transmission paths from the noise source to the sound field.

  • PDF

Efficiency Evaluation of Adsorbents for the Removal of VOC and NO2 in an Underground Subway Station

  • Son, Youn-Suk;Kang, Young-Hoon;Chung, Sang-Gwi;Park, Hyun-Ju;Kim, Jo-Chun
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.113-120
    • /
    • 2011
  • Adsorbent combination studies have been carried out to remove nitrogen dioxide ($NO_2$) and volatile organic compounds (VOCs: BTEX) out of a subway environment characterized by high flow and low concentration. Optimal conditions for the high removal efficiency of the concerned target compounds were obtained through testing a series of control factors such as adsorbent sorts, thicknesses, and superficial velocity. It was found that the efficiencies increased as the specific surface area of activated carbon and its thickness increased, and external void fraction decreased. Furthermore, mixed activated carbon with granular and constructed contents was extensively tested to reduce pressure drop through the carbon bed. It was found that the performance of higher contents of granular activated carbon was better than that of higher contents of the constructed carbon. When the mixed carbon was applied to the subway ventilation system in order to eliminate $NO_2$ and VOC simultaneously, the removal efficiencies were found to be 75% and 85%, respectively.

Effects of Atmospheric Stability and Surface Temperature on Microscale Local Airflow in a Hydrological Suburban Area (대기 안정도와 지표면 온도가 미세규모 국지 흐름에 미치는 영향: 수문지역을 대상으로)

  • Park, Soo-Jin;Kim, Do-Yong;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2013
  • In this study, the effects of atmospheric stability and surface temperature on the microscale local airflow are investigated in a hydrological suburban area using a computational fluid dynamics (CFD) model. The model domain includes the river and industrial complex for analyzing the effect of water system and topography on local airflow. The surface boundary condition is constructed using a geographic information system (GIS) data in order to more accurately build topography and buildings. In the control experiment, it is shown that the topography and buildings mainly determine the microscale airflow (wind speed and wind direction). The sensitivity experiments of atmospheric stability (neutral, stable, and unstable conditions) represent the slight changes in wind speed with the increase in vertical temperature gradient. The differential heating of ground and water surfaces influences on the local meteorological factors such as air temperature, heat flow, and airflow. These results consequentially suggest that the meteorological impact assessment is accompanied by the changes of background land and atmospheric conditions. It is also demonstrated that the numerical experiments with very high spatial resolution can be useful for understanding microscale local meteorology.

Bio-filters for the Treatment of VOCs and Odors - A Review

  • Vikrant, Kumar;Kim, Ki-Hyun;Szulejko, Jan E.;Pandey, Sudhir Kumar;Singh, R.S.;Giri, B.S.;Brown, Richard J.C.;Lee, S.H.
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.139-152
    • /
    • 2017
  • Excessive amounts of volatile organic compounds (VOCs) and odorants discharged into the environment are highly dangerous to human health as well as to ecological systems. Biological treatments of waste gas streams, called biofiltration, containing VOCs and odorous compounds has gained much attention because biofilters are more cost effective and environmentally friendly than conventional air pollution control technologies. This review provides an overview of biotrickling filtration, which is a type of biofiltration including continuous trickled-water flow inside filter media, for VOC and odor abatement. The configuration, design, cost effectiveness, removal capacity and environmental impact of this techniques and the future research and development needs in this area are all considered.

Occurance and Analysis of Combustion Instability in Supersonic Airbreathing Engine (초음속 공기흡입식 엔진 연소기의 연소불안정 발생 및 분석)

  • Hwang, Yong-Seok;Lee, Jong-Guen;Choi, Ho-Jin;Gil, Hyun-Yong;Byun, Jong-Ryul;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.83-87
    • /
    • 2009
  • Ramjet engine is weak for low frequency combustion instability because of their long air flow passage. A model combustor which has fuel injector and V-gutter shaped flame holder was designed and fabricated in order to simulate a combustion mechanism of ramjet engine, and it could demonstrate combustion instability which might occur in ramjet combustor. The frequency of the instability was very similar to that of acoustic resonance frequency of combustor, and it proved that a typical combustion instability by thermo-acoustic coupling occurred.

  • PDF

Fabrication and Characteristics of 30〔kVA〕 Superconducting Generator (30(kVA) 초전도발전기 제작 및 특성)

  • ;;;;;;;I. Muta;I. Hoshino
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.2
    • /
    • pp.32-38
    • /
    • 2001
  • A 30[kVA] superconducting generator (SCG) is built and tested at Korea Electrotechnology Research Institute (KERI) in Korea. This superconducting generator has an air-gap winding instead of the typical steel teeth structure. The rotor has 4 field coils of race-track type with NbTi superconducting wired. The rotor is composed of two dampers and a liquid helium composed of two dampers and a liquid helium container in which the field poles reside. The space between the outermost damper and the container is vacuum insulated. A ferrofluid seal is used between the stationary part connected to the couping and the rotor. A helium transfer coupling(HTC) has 3 passages of the recovered heilum gas and a gas flow control system. The open circuit test and sustained short circuit test are preformed to obtain the open circuit characteristics (OCC) and short circuit characteristics (SCC) Also. the test results usder the light load (up to 3.6[kW]) are given. The structure, manufacturing and basis test of the 30[kVA]SCG are discussed.

  • PDF

Parts grouping by a hierarchical divisive algorithm and machine cell formation (계층 분리 알고리즘에 의한 부품 그룹핑 및 셀 구성)

  • Lee, Choon-Shik;Hwang, Hark
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.589-594
    • /
    • 1991
  • Group Technology (GT) is a technique for identifying and bringing together related or similar components in a production process in order to take advantage of their similarities by making use of, for example, the inherent economies of flow production methods. The process of identification, from large variety and total of components, of the part families requiring similar manufacturing operations and forming the associated groups of machines is referred as 'machine-component grouping'. First part of this paper is devoted to describing a hierarchical divisive algorithm based on graph theory to find the natural part families. The objective is to form components into part families such that the degree of inter-relations is high among components within the same part family and low between components of different part families. Second part of this paper focuses on establishing cell design procedures. The aim is to create cells in which the most expensive and important machines-called key machine - have a reasonably high utilization and the machines should be allocated to minimize the intercell movement of machine loads. To fulfil the above objectives, 0-1 integer programming model is developed and the solution procedures are found. Next an attempt is made to test the feasibility of the proposed method. Several different problems appearing in the literature are chosen and the results air briefly showed.

  • PDF

Numerical Study of Compression Waves Propagating Through Porous Walls (다공벽을 전파하는 압축파에 관한 수치해석적 연구)

  • Kim, Hui-Dong;Setoguchi, Toshiaki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1403-1412
    • /
    • 1997
  • When a high-speed railway train enters a tunnel, a compression wave is generated ahead of the train and propagates through the tunnel, compressing and accelerating the rest air in front of the wave. At the exit of the tunnel, an impulsive wave is emitted outward toward the surrounding, which causes a positive impulsive noise like a kind of sonic boom produced by a supersonic aircraft. With the advent of high-speed train, such an impulsive noise can be large enough to cause the noise problem, unless some attempts are made to alleviate its pressure levels. In the purpose of the impulsive noise reduction, the present study calculated the effect of porous walls on the compression wave propagating into a model tunnel. Two-dimensional unsteady compressible equations were differenced by using a Piecewise Linear Method. Calculation results show that the cavity/porous wall system is very effective for a compression wave with a large nonlinear effect. The porosity of 30% is most effective for the reduction of the maximum pressure gradient of the compression wave front. The present calculation results are in a good agreement with experimental ones obtained previously.