• Title/Summary/Keyword: Air Dose Rate

Search Result 105, Processing Time 0.029 seconds

X-Rays through the Looking Glass: Mobile Imaging Dosimetry and Image Quality of Suspected COVID-19 Patients

  • Schelleman, Alexandra;Boyd, Chris
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.120-126
    • /
    • 2021
  • Background: This paper aims to evaluate the clinical utility and radiation dosimetry, for the mobile X-ray imaging of patients with known or suspected infectious diseases, through the window of an isolation room. The suitability of this technique for imaging coronavirus disease 2019 (COVID-19) patients is of particular focus here, although it is expected to have equal relevance to many infectious respiratory disease outbreaks. Materials and Methods: Two exposure levels were examined, a "typical" mobile exposure of 100 kVp/1.6 mAs and a "high" exposure of 120 kVp/5 mAs. Exposures of an anthropomorphic phantom were made, with and without a glass window present in the beam. The resultant phantom images were provided to experienced radiographers for image quality evaluation, using a Likert scale to rate the anatomical structure visibility. Results and Discussion: The incident air kerma doubled using the high exposure technique, from 29.47 µGy to 67.82 µGy and scattered radiation inside and outside the room increased. Despite an increase in beam energy, high exposure technique images received higher image quality scores than images acquired using lower exposure settings. Conclusion: Increased scattered radiation was very low and can be further mitigated by ensuring surrounding staff are appropriately distanced from both the patient and X-ray tube. Although an increase in incident air kerma was observed, practical advantages in infection control and personal protective equipment conservation were identified. Sites are encouraged to consider the use of this technique where appropriate, following the completion of standard justification practices.

Volatilization of molinate in paddy rice ecosystem and its concentration in air causing phytotoxicity to chili pepper (벼 재배 환경 중 molinate의 휘산과 공기 중 고추약해 발현농도)

  • Park, Byung-Jun;Choi, Ju-Hyeon;Kim, Chan-Sub;Im, Geon-Jae;Oh, Byung-Youl;Shim, Jae-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.1
    • /
    • pp.70-80
    • /
    • 2005
  • To evaluate the exposure of molinate in agricultural environment and its effect against the non-target crop in air, this experiment was conducted to elucidate volatilization characteristics of molinate in aquatic condition and to determine critical concentration of molinate in the air causing phytotoxicity to Chili pepper. Cumulative volatilized rate of molinate from water was 22.7% at $35^{\circ}C$ for water temperature and 20 L/min for air velocity while 3.2% at $25^{\circ}C$ and 10 L/min within 47 hour after applied under closed system, respectively. The molinate concentrations in air above 60 cm height from soil surface of valley and open paddy rice field were reached the highest value of 18.17 and $11.59{\mu}g/m^3$, respectively within 24 hours after applying granular formulation at dose rate of molinate 150 g/1,000 $m^2$. However, their concentrations were drastically diminished to around 0.18 and $0.51{\mu}g/m^3$ level in 20 days after application, which volatilization pattern were similar to both regions. Also, the concentration of molinate in air above 60 cm height from soil surface was distributed higher 2 times than that above 180 cm height. Meanwhile, a phytotoxic symptom against the nearby chili pepper was revealed within three days after applied and molinate was detected $0.004{\sim}0.006$ mg/kg level from severe damaged leaves. The dose and exposure relations of molinate in the air against the non-target crop was also investigated in lab trial. The phytotoxic symptom, shriveled leaves, of the chili pepper was encountered by exposing two days with concentration of $13.6{\mu}g/m^3$, three days with $6.8{\mu}g/m^3$ or four days with $3.4{\mu}g/m^3$. The symptom was still recovered within four weeks after the plants had received fresh air. On the other hand, the phytotoxic response through root uptake of the herbicide in water culture was relatively insensitive, in which the symptom is observed ten days with the concentration of 300 ${\mu}g/L$.

A Study of Small Radiation Dosimeter by Using Microfilm and Carbon Elecrtode (마이크로필름과 탄소막 전극을 이용한 소형방사선측정기 개발에 관한 연구)

  • 신교철;윤형근
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.59-62
    • /
    • 2004
  • We developed very small parallel plate radiation detector by using our existing experience of mating radiation dosimeter and capability of analyzing characteristics of dosimeter. The radiation detector was consisted of microfilm and carbon electrode. The detector was parallel plate type of all-filled ionization chamber. The ionization chamber had been fabricated using an acrylic plate for the air cavity and carbon coated microfilm for electrical configuration. The alr gap between two electrodes was 0.48 mm. The diameters of collect electrode and guard electrode were 3.3 mm, 5 mm respectively. The diameter of high voltage electrode was 5 mm. Nominal sensitive volume of the chamber was 0.016 ㎤. The major parameters of the chamber characteristics such as leakage current, reproducibility, dose rate effect, and polarity effect were measured. The experimental results were as followings. Leakage current was 0.1 pA. Standard deviation of reproducibility was less than 0.1%. Dose rate effect was less than 1.5%. Polarity effect was less than 2.4%. These data were comparable to those of commercially available dosimetric system for QA-purpose. As the result, we found that the radiation detector consisting of the ionization chamber, microfilm and carbon electrode, was satisfactory for the purpose of the small field dosimetry in size and characteristics. In the future, We will try to refine the dosimeter for use in very small volume.

  • PDF

Development and Performance of a Hand-Held CZT Detector for In-Situ Measurements at the Emergency Response

  • Ji, Young-Yong;Chung, Kun Ho;Kim, Chang-Jong;Yoon, Jin;Lee, Wanno;Choi, Geun-Sik;Kang, Mun Ja
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.87-91
    • /
    • 2016
  • Background: A hand-held detector for an emergency response was developed for nuclide identification and to estimate the information of the ambient dose rate in the scene of an accident as well as the radioactivity of the contaminants. Materials and Methods: To achieve this, the most suitable sensor was first selected as a cadmium zinc telluride (CZT) semiconductor and the signal processing unit from a sensor and the signal discrimination and storage unit were successfully manufactured on a printed circuit board. Results and Discussion: The performance of the developed signal processing unit was then evaluated to have an energy resolution of about 14 keV at 662 keV. The system control unit was also designed to operate the CZT detector, monitor the detector, battery, and interface status, and check and transmit the measured results of the ambient dose rate and radioactivity. In addition, a collimator, which can control the inner radius, and the airborne dust sampler, which consists of an air filter and charcoal filter, were developed and mounted to the developed CZT detector for the quick and efficient response of a nuclear accident. Conclusion: The hand-held CZT detector was developed to make the in-situ gamma-ray spectrometry and its performance was checked to have a good energy resolution. In addition, the collimator and the airborne dust sampler were developed and mounted to the developed CZT detector for a quick and efficient response to a nuclear accident.

Development and Application of Radiological Risk Assessment Program RADCONS (방사능위해성평가 프로그램 RADCONS의 개발 및 적용)

  • Jeong, Hyojoon;Park, Misun;Hwang, Wontae;Kim, Eunhan;Han, Moonhee
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.1
    • /
    • pp.89-97
    • /
    • 2013
  • RADCONS Ver. 1.0 (RADiological CONSequence Assessment Program) was developed for radiological risk assessment in this study. A Gaussian plume model was used to analyze the fate and transport of radionuclides released into the air in case of accidents. Both single meterological data and time series meterological data can be used in RADCONS. To assess the radiological risk of the early phase after an accident, ED (Effective Dose) estimated by both deterministic and probabilistic approaches are presented. These EDs by deterministic and probabilistic will be helpful to efficient decision making for decision makers. External doses from deposited materials by time are presented for quantifying the effects of mid and late phases of an accident. A radiological risk assessment was conducted using RADCONS for an accident scenario of 1 Ci of Cs-137. The maximum of ED for radii of 1,000 meters from the accident point was 8.51E-4 mSv. After Monte-Carlo simulation, considering the uncertainty of the breathing rate and dispersion parameters, the average ED was 8.49E-4, and the 95 percentile was 1.10E-3. A data base of the dose coefficients and a sampling module of the meteorological data will be modified to improve the user's convenience in the next version.

Oxidation of Carbon Monoxide by Pseudomonas carboxydohydrogena (Pseudomonas carboxydohydrogena에 의한 일산화탄소의 산화)

  • ;Hegeman, George
    • Korean Journal of Microbiology
    • /
    • v.21 no.1
    • /
    • pp.27-35
    • /
    • 1983
  • The stoichiometry between the consumption of CO and $O_2$ and the production of $CO_2(2CO+O_2{\rightarrow}2CO_2)$) showed that Pseudomonas carboxydohydrogena grows as a typical aerobic CO oxidizer with CO. The optimal concentration of CO for growth was found to be 30% in gas mixture with air. The initial buffer concentration of the culture medium did not affect the growth of this bacterium. P. carboxydohydrogena is an obligate aerobe and dose not use nitrate as a terminal electron acceptor. The CO dehydrogenase is an inducible and soluble enzyme. The reaction rate and stability were maximal at pH7.5, and the Arrhenius plot revealed an activation energy of 37.7kJ/mol (9.0 Kcal/mol). The crude enzyme used methylene blue, thionin, and toluylene blue as electron acceptors for the oxidation of CO to $Co_2$ under anaerobic conditions. It was found that water must be the source of the second oxygen atom for CO oxidation.

  • PDF

The Improvements for Fire Retardancy and Radiation Resistance of Chloroprene Rubber (클로로프렌 고무의 난연성 및 내방사선 특성 향상)

  • Kim, Ki-Yup;Lee, Chung;Ryu, Boo-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1205-1211
    • /
    • 2004
  • This study has investigated radiation degradation of chloroprene rubber in the presence of some fire retardant. Ammonium polyphosphate, aluminium trihydroxide, magnesium hydroxide, calcium carbonate and antimony trioxide were selected as flame retardant. Samples were irradiated using a Co$^{60}$ ${\gamma}$ -ray and ray up to 2000 kGy at a dose rate of 5 kGy/hr in the presence of air atmosphere at room temperature. After irradiation, samples were assessed fire retardancy with electrical properties and mechanical properties. Some considerations concerning the effects of the fire retardants added to chloroprene rubber on the radiation and thermal stability of chloroprene rubber are presented. From fire retardancy with electrical and mechanical property measurements, it was found that addition of magnesium hydroxide resulted in maximum fire retardant effect.

Evaluation of Respiration Reproducibility of Chest General X-ray Examination using Self-made Respiratory Synchronization Device (자체 제작한 호흡 동기화 장치를 통한 흉부 일반촬영 검사의 호흡 재현성 평가)

  • Kwon, Oh-Young;Lee, Chang-Hun;Yong, Keum-Ju;Jin, Seon-Hui;Jung, Da-Bin;Heo, Yeong-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.1049-1056
    • /
    • 2021
  • The purpose of this study was to develop a respiratory synchronization device for X-ray (X-RSD) to increase the reproducibility of inspiration when examining the Chest X-ray of a patient who difficulty in breathing coordination. The X-RSD was self-made using an air pressure sensor and air was injected by connecting a ventilator to the mannequin for CPR. At this time, the amount of injected air was quantified using the SkillReporting device. After placing the X-RSD on the chest of the mannequin, the amount of air was tested in 6 steps from 200 to 700 cc by 100 cc increased. For the accuracy evaluation, the sensitivity of X-RSD was measured by repeating a total of 80 measurements, and the sensitivity was 100%, and very precise results were obtained. After that, the images examined while viewing the X-RSD of the chest lateral examination and the images obtained by the blind examination were compared and evaluated. The lung volume of X-RSD was larger than that of the blind test, and the deviation was smaller. Overall, the use of X-RSD can help with chest X-ray examination of patients who have difficulty in cooperating, and it is thought that it will be possible to contribute to the reduction of exposure dose by reducing the repeat rate of general X-ray examinations.

Calculation of Route Doses for Korean-based International Airline Routes using CARI-6 and Estimation of Aircrew Exposure (CARI-6를 이용한 국제선 노선별 선량 및 항공승무원의 피폭선량 평가)

  • Hong, J.H.;Kwon, J.W.;Jung, J.H.;Lee, J.K.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.2
    • /
    • pp.141-150
    • /
    • 2004
  • Dose rate characteristics of cosmic radiation field at flight altitudes were analyzed and the route doses to the personnels on board due to cosmic-ray were calculated for Korean-based commercial international airline routes using CARI-6. Annual individual doses to aircrew and the collective effective dose of passengers were estimated by applying the calculated route doses to the flight schedules of aircrew and the air travel statistics of Korea. The result shows that the annual doses to aircrew, around 2.62 mSv, exceed the annual dose limit of public and are comparable to doses of the group of workers occupationally exposed. Therefore it is necessary to consider the frequent flyers as well as the aircrew as the occupational exposure group. The annual collective dose to 11 million Korean passengers in 2001 appeared to be 136 man-Sv. The results should be modified when the dose rates of cosmic radiation at high altitude are revised by taking into account the changes in the radiation weighting factors for protons and neutrons as given in ICRP 92.

Effect of Drinking Water Treatment by DOF(Dissolved Ozone Flotation) System (DOF 공정에 의한 정수처리 효과)

  • Lee, Byoung-Ho;Song, Won-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.743-750
    • /
    • 2008
  • In water treatment plant the Dissolved Ozone Flotation(DOF) System may be employed because this system has various abilities, such that it can remove SS using microbubbles, and it can exert strong oxidation power in removing taste and odor, color, and microbial agents. In order to investigate effectiveness of the DOF system in water treatment, removal characteristics of various water quality parameters were observed depending on the different levels of ozone concentrations. Removal efficiencies of water quality parameters in DOF system were compared with those in DAF(Dissolved Air Flotation) system and in CGS(Conventional Gravity Settling) system. Optimum ozone dose obtained in the pilot experiments was 2.7 mg/L. With increasing ozone dose higher than 2.7 mg/L, removal rates of turbidity, KMnO$_4$ consumption, UV$_{254}$ absorbance, and TOC were reversely lowered. High concentration of ozone dissociate organic matter in water, so that increasing dissolved organic level in effluent. Removal rates of water quality parameters at optimum ozone dose were obtained, such that removal rates of turbidity, KMnO$_4$ consumption, TOC, and UV$_{254}$ asorbance were 88.9%, 62.9%, 47%, and 77.3% respectively. Removal rate of THMFP was 51.6%. For all the parameters listed above, the DOF system was more effective than the DAF system or the CGS system. It is found that the DOF system may be used in advanced water treatment not only because the DOF system is more efficient in removing water quality parameters than the existing systems, but because the DOF system is also required smaller area than the CGS system for the treatment plant.