• Title/Summary/Keyword: Air Defense Performance

Search Result 145, Processing Time 0.023 seconds

Current State and Future of Refrigerants for Refrigeration and Air Conditioning

  • Kagawa, Noboru
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.4
    • /
    • pp.182-190
    • /
    • 2007
  • Refrigeration and air-conditioning equipments are indispensable products in this civilized society. However, discharged refrigerants used in the equipments and exhausted carbon dioxide to drive the refrigeration and air-conditioning equipments are related to serious environmental problems and energy problems. Especially, the destroyed ozonosphere by the discharged refrigerants and the increased normal temperature by carbon dioxide and fluorocarbon refrigerants (green house gases) are sounded as serious global problems. For alleviating these problems, environmental-friendly refrigeration and air-conditioning equipments must be developed and will spread soon. To develop new equipment, a suitable refrigerant for each usage must be presented. In this paper, the current state of refrigerants was introduced. And, thermophysical properties of the refrigerants were introduced briefly. From the properties, the refrigerants and refrigeration cycles are promising to be used in the future, were proposed

Study on Improvement in Cooled Air Defense Gun System Including Closed Drum Basket (비개방형 포탑드럼바스켓을 가진 대공포체계의 냉방장치개선 연구)

  • Hwang, Boo Il;Lee, Dong Hui;Kim, Chi Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.109-113
    • /
    • 2015
  • Combat vehicles need an air-conditioning unit, although new combat systems tend to use an integrated system for heating, cooling, and ventilating. The specifications of an air-conditioning unit depend on the combat vehicle's purpose. It is difficult to send cooling air from the air-conditioning unit to a gun turret through the drum basket because the gun turret rotates and consists of a closed anti-aircraft shell magazine. In this study, we considered an air-conditioning unit for armored combat vehicle based on the special requirements and military specifications. We evaluated the performance of the air-conditioning unit despite the rotating gun turret through analysis and tests in terms of flow improvement compared to the previous model.

Compensation Method of Tropospheric Delay Model Error for Ground Navigation using Meteorological Data in Korea (한반도 기상데이터를 이용한 지상항법 대류권 지연 오차 보상기법)

  • So, Hyoungmin;Lee, Kihoon;Park, Junpyo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.163-170
    • /
    • 2016
  • Tropospheric delay is one of the largest error source in pseudolite navigation system. Because a pseudolite is installed on the ground and transmits its signal to a user in the air or on the ground, the conventional tropospheric delay model developed for a satellite navigation doesn't work properly. In this paper, performance analysis of several pseudolite tropospheric delay models has been done using meteorological data. Based on the result, a new compensation method for Hopfield model has been proposed.

Analyses on Aerodynamic and Inertial Loads of an Airborne Pod of High Performance Fighter Jet (고기동 항공기 하부 장착 파드의 공력 및 관성하중 분석 연구)

  • Lee, Jaein;Shin, Jinyoung;Cho, Donghyun;Jung, Hyeongsuk;Choi, Taekyu;Lee, Jonghoon;Kim, Youngho;Kim, Sitae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.9-22
    • /
    • 2022
  • A fighter performing a reconnaissance mission is equipped with a pod that drives optical/infrared sensors for acquiring and identifying target information on the lower part of the fuselage. Due to the nature of the reconnaissance mission, the fighter performs high speed evasive maneuvers, and the resulting load should be considered importantly for the development of the pod. This paper concerns a numerical investigation into the inertial and aerodynamic loads of the airborne pod of high performance aircrafts. For the aerodynamic load analysis, the pylon and pod shapes are added to the fighter 3D model, and the commercial software was used for static and dynamic analysis. Considering the practical mission conditions, the common/extreme conditions were established respectively in the static and dynamic situations of pods and the driving torque could be tripled under dynamic conditions. In the analysis of inertia load, a 3-DOF model considering roll and turning maneuvers was derived by the Lagrangian method, and then the numerical integration method was applied to the analysis. As a results, it was conformed that the inertia load was generally induced at a low level compared to the aerodynamic load, but depending on the unbalance mass condition of the pod, the inertia load cannot be negligible.

Development of Pressure Correction System for Surface Vessel to Ensure Reliability of Compartment Test Result (수상함 격실기밀시험 결과의 신뢰성 확보를 위한 압력 보정 시스템 개발)

  • Min, Il-Hong;Kim, Jun-Woo;Son, Gi-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.409-414
    • /
    • 2021
  • Tightness performance that blocks compartments is important for surface ships to achieve superior mission performance and survivability in combat environments. To meet the above requirements, airtightness of the structural elements and the appropriate strength to specific areas are checked during a test run after ship construction. In particular, air tests of compartments adjacent to the water surface are performed. In an air test, air is injected into the compartment up to the test pressure of the test memo. The pressure drop value is checked after 10 minutes to determine if the requirements of the corresponding area are satisfied. In summer, however, when the influence of the outside temperature is large, a phenomenon in which the internal pressure increases during the air test was identified. This phenomenon reduces the reliability of the test result. Therefore, a system was designed to compensate for temperature changes in the compartments through this study. The developed system calculates the amount of pressure change caused by a temperature change in the compartment and outputs a correction value. The pressure change was calculated using the ideal gas equation, reflecting the maintenance, increase, and decrease in temperature during the test process. A comparison of the calculated pressure correction value with the database of NIST REFPROP revealed a difference of 0.126% to a maximum of 0.253%.

Development and Analysis of Real-time Distributed Air Defense System Simulator Using a Software Framework (소프트웨어 프레임워크를 이용한 대공유도무기 실시간 분산 시뮬레이터 개발 및 분석)

  • Cho, Byung-Gyu;Youn, Cheong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.58-67
    • /
    • 2005
  • To overcome limitations of test scope, schedule and cost, M&S(Modeling & Simulation) technique has been applied for T&E(Test and Evaluation) of the state-of-art weapon systems. This paper proposes an air defense simulation software framework to reduce both redundancy an[1 programming errors in system simulator. The proposed framework consists of a 'model' and a 'middleware' The 'middleware' is a reliable communication service layer that supports not only HLA(High Level Architecture) which is an international standard in M&S but also TCP/IP, UDP and etc. The main role of 'model' is to schedule and to run the real-time distributed simulation. The proposed framework has been applied to M-SAM(Middle range Surface to Air Missile) system simulator. The proposed framework's scheduling and communication performance results are satisfactory and were measured by hardwired NTP(Network Timer Protocol) time-stamp with GPS(Global Positioning System) timer for better precision.

First-Principle Calculation Study of Cu Adsorption on X-doped (X=Ru, P, Si) 𝛾-Al2O3 (X-doped (X=Ru, P, Si) 𝛾-Al2O3 상의 Cu 흡착 제일원리 계산 연구)

  • LEE, EUNHYE;JI, HYUNJIN;CHOI, EUNYEONG;LEE, JUNGHUN;CHO, JANGHYEON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.1
    • /
    • pp.105-112
    • /
    • 2022
  • Copper (Cu)-based catalysts have been widely used in a methanol steam reforming (MSR) reaction for hydrogen production for air-independent propulsion (AIP) applications and their good catalytic activities have attracted much attention. However, the agglomeration of the catalytic active site Cu causes deteriorating the catalytic performance and suppression of Cu agglomeration is a crucial issue in the AIP applications that the MSR system is typically operated at 250-300℃ for a long time. R. Sakai et al. recently showed a computational study on the anchoring effect that reduces an agglomeration of active sites by doping in a supporter. In order to present the anchoring effect on 𝛾-Al2O3 supported Cu-based catalysts, in this study, the adsorption energies of Cu on X-doped (X=ruthenium, phosphorus, silicon) 𝛾-Al2O3 were calculated and Cu adsorption energy decreased due to a change of the electronic structure originated from doping, thereby proving the anchoring effect.

Analysis of MWIR and LWIR Signature of Supersonic Aircraft to Air-to-air and Surface-to-air Missile by Coupled Simulation Method (통합해석기법을 활용한 공대공 및 지대공 적외선 미사일 대응 초음속 항공기의 중적외선 및 원적외선 신호 분석)

  • Kim, Taehwan;Bae, Ji-Yeul;Kim, Taeil;Jung, Daeyoon;Hwang, Chang Su;Cho, Hyung Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.764-772
    • /
    • 2014
  • The stealth performance of supersonic aircraft in recent air battlefield is one of the most significant feature for latest fighters. Especially, as the technology is advancing, the IR stealth capability becomes more important because of its passive characteristic. To design an aircraft with stealth capability, we must know how much the IR signature is generated from the aircraft. Also, predicting the IR signature of enemy's aircraft is tactically crucial. In this study, we calculated MWIR and LWIR infrared signature of $5^{th}$ generation supersonic aircraft against air-to-air and surface-to-air threat using IR simulation code and CFD coupled procedure.

A Study on Back EMF of BLDC Motor Using Numetical Analysis Method (수치해석 방법을적용한 BLDC 전동기의 역기전력 연구)

  • Kim, Hyun-Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.36-41
    • /
    • 2008
  • This report describes the analytical solution of back EMF for BLDC motor using numerical analysis of air gap flux density. The analysis of air gap flux density is the key to expect the performance of back EMF for the design of brushless motor. The numerical analysis and FEM analysis are performed to vary attachment of stator side or rotor side, radial flux magnetization or parallel flux magnetization, magnet arc angle in the condition of constant air gap. This results have more reliable data comparing with test result of the back EMF for 7 phase BLDC motor.

Distributed Task Assignment Algorithm for SEAD Mission of Heterogeneous UAVs Based on CBBA Algorithm (CBBA 기반 SEAD 임무를 위한 이종무인기의 분산형 임무할당 알고리듬 연구)

  • Lee, Chang-Hun;Moon, Gun-Hee;Yoo, Dong-Wan;Tahk, Min-Jea;Lee, In-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.988-996
    • /
    • 2012
  • This paper presents a distributed task assignment algorithm for the suppression of enemy air defense (SEAD) mission of heterogeneous UAVs, based on the consensus-based bundle algorithm (CBBA). SEAD mission can be modeled as a task assignment problem of multiple UAVs performing multiple air defense targets, and UAVs performing SEAD mission consist of the weasel for destruction of enemy's air defense system and the striker for the battle damage assessment (BDA) or other tasks. In this paper, a distributed task assignment algorithm considering path-planning in presence of terrain obstacle is developed for heterogeneous UAVs, and then it is applied to SEAD mission. Through numerical simulations the performance and the applicability of the proposed method are tested.