• Title/Summary/Keyword: Air Conditioning Unit

Search Result 377, Processing Time 0.024 seconds

A Study on Development of a Ground-Source Heat Pump System Utilizing Pile Foundation of a Building (건물 기초를 이용한 지중열 공조시스템의 개발에 관한 연구 (1))

  • Ryozo, Ooka;Nam, Yu-Jin;Kentaro, Sekine;Mutsumi, Yokoi;Yoshiro, Shiba;Hwang, Suck-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.148-154
    • /
    • 2005
  • Ground-source (Geothermal) heat pump (GSHP) systems can achieve a higher coefficient of performance than conventional air-source heat pump (ASHP) systems. However, GSHP systems are not widespread in Japan because of their expensive boring costs. The authors have developed a GSHP system that employs the cast-in-place concrete pile foundations of a building as heat exchangers in order to reduce the initial boring cost. In this system, eight U-tubes are arranged around the surface of a cast-in-place concrete pile foundation. The heat exchange capability of this system, subterranean temperature changes and heat pump performance were investigated in a foil-scale experiment. As a result, the average values for heat rejection were 186${\sim}$201 W/m (for pile, 25 W/m per Pair of tubes) while cooling. The average COP of this system was 4.6 while cooling; rendering this system more effective in energy saving terms than the typical ASHP systems. The initial cost of construction per unit for heat extraction and rejection is ${\yen}$72/W for this system, whereas it is f300/W for existing standard borehole systems.

  • PDF

Experimental Study of Showcase Using Cold Storage System (축냉 시스템을 적용한 쇼케이스 운전에 대한 실험적 연구)

  • Lee, Eun-Ji;Lee, Dong-Won;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1111-1116
    • /
    • 2008
  • The purpose of this study is to maintain high efficiency and reasonable use of cold-heat storage systems operated the showcase. An experimental study is carried out to manufacture the showcase system in a laboratory. Comparing the result at general operation condition with that at the new condition using ice storage system, this study showed the effects of the refrigerant sub-cooling, and with using inverter. At the condition using ice storage system, the ice making process was operated during midnight being not needed the cooling of the showcase through the continuous running of the condenser unit. And then, the refrigerant was sub-cooled using stored cold-heat after being discharged from the air cooling condenser during the day time. The cooling performance was increased owing to the sub-cooling of refrigerant during day time, hence the running time of the compressor was effectively decreased. In other words, this study showed that power consumption during daytime can be transferred to the midnight for making use of the refrigerant sub-cooling.

  • PDF

A study on the Cold-heat Storage System for Operation Status Monitoring of Showcase (쇼케이스 운전상태를 고려한 축냉시스템 적용타당성 연구)

  • Lee, Eun-Ji;Lee, Dong-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1261-1266
    • /
    • 2008
  • Experimental study was performed to understand the operations of a showcase working in a discount store. Temperatures of evaporation, condenser were measured and also electric power consumption of compressor were measured. The purpose of this study is to application use of cold-heat storage systems operated the showcase. At the condition using ice storage system, the ice making process was operated during midnight being not needed the cooling of the showcase through the continuous running of the condenser unit. And then, the refrigerant was sub-cooled using stored cold-heat after being discharged from the air cooling condenser during the day time. The cooling performance was increased owing to the sub-cooling of refrigerant during day time, hence the running time of the compressor was effectively decreased. In other words, this study showed that power consumption during daytime can be transferred to the midnight for making use of the refrigerant sub-cooling. So the operating characteristics of the showcase system under various working conditions were analyzed and discussed.

  • PDF

Drying Equations of Sarcodon Aspratus (능이버섯의 건조 방정식)

  • Keum, D.H.;Ro, J.G.;Jung, T.Y.;Hong, S.R.;Park, K.M.;Kim, H.;Han, J.W.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.1
    • /
    • pp.59-64
    • /
    • 2004
  • This study was performed to determine drying equations of sarcodon aspratus. Drying tests for sarcodon aspratus were conducted in an experimental dryer equiped with an air conditioning unit. The drying tests were performed at three air temperatures of 30$^{\circ}C$, 40$^{\circ}C$ and 50$^{\circ}C$, and two relative humidities of 30% and 50%. Measured moisture ratio data were fitted with the selected four drying models(Page, Thompson, Lewis and simplified diffusion models) using stepwise multiple regression analysis. When the coefficients of determination and root mean square errors of moisture ratio were evaluated for four drying models, the Page model was found to fit adequately to all the drying test data with coefficient of determination of 0.9996 and RMSE of 0.00523.

The Design, Implementation, Demonstration of the Architecture, Service Framework, and Applications for a Connected Car

  • Kook, Joongjin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.637-657
    • /
    • 2021
  • While the conventional vehicle's Head-Units played relatively simple roles (e.g., control of heating ventilation and air conditioning, the radio reception), they have been evolving into vehicle-driver interface with the advent of the concept of Connected Car on top of a rapid development of ICT technology. The Head-Unit is now successfully extended as an IVI (In Vehicle Infotainment) that can operate various functions on multimedia, navigation, information with regards to vehicle's parts (e.g. air pressure, oil gauge, etc.). In this paper, we propose a platform architecture for IVI devices required to achieve the goal as a connected car. Connected car platform (CoCaP) consists of vehicle selective gateway (VSG) for receiving and controlling data from major components of a vehicle, application framework including native and web APIs required to request VSG functionality from outside, and service framework for driver assistance. CoCaP is implemented using Tizen IVI and Android on hardware platforms manufactured for IVI such as Nexcom's VTC1010 and Freescale's i.MX6q/dl, respectively. For more practical verification, CoCaP platform was applied to an real-world finished vehicle. And it was confirmed the vehicle's main components could be controlled using various devices. In addition, by deriving several services for driver assistance and developing them based on CoCaP, this platform is expected to be available in various ways in connected car and ITS environments.

Comparison of Standards for healthcare Facilities and Environmental Investigation to Analyze Guidelines and Current Status of Healthcare Facilities (의료시설 관련 기준 비교와 환경 조사를 통한 의료시설 지침 및 현황 분석)

  • Jo, Yelim;Kim, Gihoon;Sung, Minki
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.28 no.4
    • /
    • pp.51-60
    • /
    • 2022
  • Purpose: This study aims to analyze and supplement the standards related to healthcare facilities, negative pressure isolation wards, and emergency treatment facilities. In addition, through environmental investigations, analysis of emergency remodeling cases centered on the structural and HVAC characteristics of healthcare facilities is conducted. Methods: Domestic and foreign standards related to healthcare facilities were analyzed. Field investigations and architectural drawing analysis of general and emergency treatment facilities were conducted. Results: Healthcare facilities have different space classifications and air conditioning methods depending on the site situation. Emergency treatment facilities are classified into cases where the HVAC system is remodeled and portable negative pressure unit is installed, and some facilities did not meet the standards for differential pressure and air change rate. Implications: When developing emergency remodeling technology, remodeling and safety evaluation guidelines, it is considered possible to propose clearer guidelines for emergency remodeling treatment facilities for infectious diseases in Korea by referring to the results of this study.

A Study on Analysis of Energy Consumption of a High School Facilities in Korea (전국 고등학교 시설의 에너지 사용실태 분석 연구)

  • Yoon, Jong-Ho;Shin, U-Cheul;Cho, Jin-Il;Kim, Hyo-Jung;Lee, Chul-Sung
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.55-62
    • /
    • 2010
  • The purpose of this study is to present various analysis result of energy consumption that is a statistical analysis of high school facilities in Korea for setting the goal of energy saving. This study enforced analysis after it provided used energy consumption for the year 2008 and general in formation from 2202 high school facilities in 16 cities in South Korea by the relevant agency. Consequently, it represents that the average energy consumption of electric power was 428.7MWh(65.7%), gas consumption for heating was 129.5MWh(19.8%), oil consumption was 84.6MWh(13.0%), district energy was 10.0MWh(1.5%) in nation after changing as unit 'kWh' only for comparison with every energy source. This result describes that consumption of electric power was large greatly and it reflects the expectation that it will climb the demand regarding this energy in the future. In additionally, it analyzed average energy consumption with $98.3kWh/m^2$ by the unit area of air-conditioning and the district which has large energy consumption was Gyeonggi-do with $115.9kWh/m^2$. Furthermore, it described the average energy consumption of $60.8kWh/m^2$ by the unit area of floor area and the average energy consumption of a student analyzed with 1157.0kWh.

CFD on the possibility of performance evaluation of heat pump outdoor unit in duct-type constant temperature chamber (덕트형 항온챔버에서 히트펌프 실외기의 성능평가 가능성에 대한 CFD)

  • Kim, Jong-Ryeol
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.3
    • /
    • pp.116-121
    • /
    • 2021
  • A lot of research is being done to develop a high-efficiency heat pump to save energy, and research to reduce or eliminate the phenomenon of frost occurring in the outdoor unit coil is also being conducted at the same time. A curved constant temperature chamber was constructed that can be tested under the same conditions as in the natural state so that the research can be conducted in which frost does not occur on the outdoor unit of the heat pump regardless of the season. Simulations were performed to verity whether such a curved constant temperature chamber has feasibility as an experimental device. For CFD conditions, the length of the straight duct in front of the outdoor unit located in the duct-type constant temperature chamber was 1, 5, 10 and 15 times the diameter of the duct. As a result, it was found that a straight space must be secured 10 times the diameter of the duct.

Selection of Ventilation Rate and Filter for a Residential Housing in View of Indoor Particle Concentration (공동주택의 적정 환기량 및 필터의 선정 - 실내입자농도를 중심으로 -)

  • Noh, Kwang-Chul;Jung, Yee-Kyeong;Hwang, Jung-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.517-522
    • /
    • 2008
  • Ventilation rate and filter were selected to simultaneously satisfy indoor air quality and minimize energy consumption in residential housing. The concentrations of indoor particles were calculated using an adapted mass balance model for various ventilation airflow rates. To satisfy the guidelines for indoor concentrations of particles, the minimum ventilation rates of 1.0/h, 0.6/h and 0.4/h were required for MERV11, MERV13 and MERV14, respectively. And the fan power consumptions induced by ducts, a heat exchanger and a filter were calculated for various ventilation airflow rates. The increase in the ventilation rate caused a dramatic increase in the power consumption, but the filter performance did not have much of an effect on the fan power for ventilation airflow rates lower than 0.4/h. The use of the ventilation filter of MERV 14 was suggested at a ventilation rate of 0.4/h when the fan power consumptions were considered in addition to the indoor concentrations of particles and $CO_2$. The use of the MERV14 filter at a ventilation rate of 0.6/h could be more effective than the additional use of an indoor air cleaner when the residential housing unit was ventilated.

  • PDF

Energy Performance Evaluation of Low Energy Houses using Metering Data (실측데이터를 이용한 저에너지주택의 에너지성능평가)

  • Baek, Namchoon;Kim, Sungbum;Oh, Byungchil;Yoon, Jongho;Shin, Ucheul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.369-374
    • /
    • 2015
  • This study analyzed analyzes the energy performance of six houses in Daejeon completed which were built in 2011. Observed The observed houses, which were all designed and constructed inof the same size and structure, are were highly insulated with triple Low-E coating windows; the insulation level of the walls is was $0.13W/m^2K$ and that of the roof is was $0.10W/m^2K$. As electric houses, all of the energy supplied to the houses, including for cooking, is was supplied by electricity. A and 3~4 kWp of photovoltaic system and a 3~5 kW of ground source heat pump (GSHP) were installed in each house tofor providing provide space heating/and cooling and hot water are installed. We constructed a Web-based remote monitoring system in order to understand energy consumption and the dynamic behavior of the energy system. T, and the results of our metering data analysis of 2013 are as follows. First, the annual residential energy consumption is was 4,400 kWh (${\sigma}=1,209$) and GSHP energy consumption is was 5,182 kWh (${\sigma}=1,164$). Second, residential energy consumption ranked highest in average energy usage, with at 45% of the total, followed by heating with at 30%, hot water supply with at 17% and cooling with at 6%. Third, the average energy independence rate is was 51.8%, the GFA (Gross gross floor area) criteria average energy consumption unit is was $48.7kWh/m^2yr$ (${\sigma}=10.1$), and the net energy consumption unit (except the energy yield of the PV systems) is was $24.7kWh/m^2yr$ (${\sigma}=8.8$).