• Title/Summary/Keyword: Agrobacterium tumefaciens.

Search Result 366, Processing Time 0.029 seconds

Transformation of Rice (Oryza sativa L.) with Sucrose Transporter cDNA from Potato (Solanum tuberosum L.) (감자 Sucrose Transporter 유전자의 벼 Genome 내로의 도입)

  • 백소현;유남희;윤성중
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.2
    • /
    • pp.97-101
    • /
    • 2001
  • The transport and allocation of photosynthetic assimilate is an important regulatory factor in plant productivity, In order to modify assimilate partitioning in rice, transgenic plants containing a potato sucrose transporter (SuT) gene were developed. Calli derived from rice seeds (Oryza sativa L. cv Dongjin) were cocultured with A. tumefaciens LBA 4404 harboring the SuT gene. Calli were transferred to MS medium supplemented with 50 mg/L hygromycin, 500 mg/L carbenicillin, 2 mg/L kinetin, 0.1 mg/L NAA. After 2 weeks, hygromycin resistant shoots were obtained from the calli on the selection medium. Roots were induced from the putative transgenic shoots on rooting MS medium supplemented with 250 mg/L cabenicillin. Plant regeneration rate from the calli was about 150%. Stable incorporation of the potato SuT gene into rice genomic DNA was confirmed by PCR and Southern blot analysis.

  • PDF

Vector Construction and Transformation of Ginseng (Panax ginseng C.A. Meyer) Using Disease Resistant Genes (내병성 관련유전자의 운반체 재조합 및 인삼(Panax ginseng C.A. Meyer)의 형질전환)

  • Yang, Deok-Chun;Lee, Eun-Kyung;Kim, Moo-Sung
    • Journal of Ginseng Research
    • /
    • v.27 no.1
    • /
    • pp.37-42
    • /
    • 2003
  • For study about introduce of gene connected with disease and transformation system of gingseng, chitinase gene cloned from soybene and disease resistant gene were carried out for expression and transformation of plant using Agrobacterium. The disease resistance gene(DR-49), 35S-35S-AMV, has been constructed. The disease resistance gene and chitinase gene were introduced into the binary vector pRD 400, which were mobilized into Agrobacterium tumefaciens faciens strain MP 90 and LBA 4404 harboring disarmed Ti-plasmid. As a result of induce transformants using ginseng embryo and petiole, multi shoots were formed on MS medium supplemented 1 mg/ι 2,4-D and 0.5 mg/ι kinetin. Also transformation by cotyledonwas effective on MS medium supplemented 1 mg/ι 2,4-D and 0.5 mg/ι kinetin, transformation percent of disease resistant gene and chitinase gene were showed 18%, 14% respectively. As transformed tissue is under pre-embryoid condition, normal shoot is required through the process of matured embryo.

Development of Antibiotics Marker-free Potato Having Resistance Against Two Herbicides (두 가지 제초제에 대하여 저항성을 가지는 항생제 마커-프리 형질전환 감자 육성)

  • Fang, Yi-Lan;Kim, Jin-Seog;Gong, Su;Mo, Hwang-Suk;Min, Seok-Ki;Kwon, Suk-Yoon;Li, Kui-Hua;Lim, Hak-Tae
    • Journal of Plant Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.253-261
    • /
    • 2007
  • This study was conducted to develop an antibiotics marker-free potato (Solanum tuberosum L., cv. Taedong valley) plant having resistance against two herbicides. Agrobacterium tumefaciens strain EHA105, harboring a binary vector plasmid pCAMBIA3300 containing bar gene under the control of a promoter CaMV35S and linked CP4-EPSPS genes driven by CaMV35S promoter, was used in the current study. The leaf segments of newly bred potato variety (cv. Taedong Valley) was co-cultured with Agrobacterium. Then, the regenerated individual shoots were excised and transferred to potato multiplication medium supplemented with 0.5 mg/L phosphinothricin. The shoots were rooted in MS medium without hormone and obtained putative transgenic plant E3-6. Integration of target genes into the E3-6 plant and their expression was confirmed by PCR, Southern analysis, and ELISA test. The tissue necrosis test on young leaf blade and shikimic acid accumulation test using the tissue of E3-6 plant were conducted to investigate the resistance to glufosinate-ammonium and glyphosate, respectively. The transgenic plants (E3-6) simultaneously showed a high resistance to both herbicides. The same results were surely obtained also in the whole plants foliar-treated with alone or mixture of two herbicides, glufosinate-ammonium and glyphosate.

Production of secondary metabolites by tissue culture of Artemisia annua L. (Artemisia annua L.의 조직배양을 이용한 이차대사 산물의 생산)

  • Kim, Nam-Cheol;Kim, Jeong-Gu;Lim, Hyung-Joon;Hahn, Tae-Ryong;Kim, Soo-Un
    • Applied Biological Chemistry
    • /
    • v.35 no.2
    • /
    • pp.99-105
    • /
    • 1992
  • Artemisia annua contains the antimalarial principle, artemisinin. The possibility of the production of this compound through tissue culture technique was studied. The optimum combinations of hormones for the induction of callus were p-chlorophenoxyacetic acid(pcPA) and 6-benzylaminopurine(BAP) or pcPA and N-isopentenylaminopurine(2iP) in 0.05 mg/l each. For the growth of callus, the same combination of pcPA and BAP was optimum in concentrations of $1.0\;{\mu}M\;and\;0.5\;{\mu}M$, respectively, and the optimal concentration of sucrose was also found to be 2%(w/v). Tissue culture from the crown gall grew faster than normal callus. In the suspension culture broth and the cells of normal callus or Agrobacterium-transformed tumors, arteannuic acid and 11,12-dihydroarteannuic acid were found together with common phytosterols, whereas artemisinin was not found.

  • PDF

Development of a Transient ihpRNA-induced Gene Silencing System for Functional Analysis in Persimmon (Diospyros kaki Thunb.)

  • Mo, Rongli;Zhang, Na;Yang, Sichao;Zhang, Qinglin;Luo, Zhengrong
    • Horticultural Science & Technology
    • /
    • v.34 no.2
    • /
    • pp.314-323
    • /
    • 2016
  • A transient ihpRNA-induced gene silencing system based on Agrobacterium-mediated injection infiltration has been established to evaluate candidate genes involved in proanthocyanidin (PAs) biosynthesis in persimmon (Diospyros kaki Thunb.). We chose DkPDS (phytoene desaturase) as a gene-silencing target to evaluate the newly developed transient gene silencing system. Our qRT-PCR analysis indicated that two ihpRNA constructs (pHG-PDS5' and pHG-PDS3') targeted DkPDS, which also led to significantly reduce expression of DkPDS in 'Mopanshi' persimmon leaves. To further confirm the reliability of the system, we successfully utilized it for DkLAR (leucoanthocyanidin reductase) gene silencing. The expression levels of DkLAR in 'Mopanshi' and 'Eshi 1' leaves were ca. 6-fold and ca. 5-fold lower than those in leaves harboring empty vector (pHG-GFP), respectively. DMACA (4-dimethylaminocinnamaldehyde) staining and the Folin-Ciocalteau assay showed that the accumulation of PAs was markedly inhibited in 'Mopanshi', 'Eshi 1' and 'Youhou' leaves. These results indicate that DkLAR plays an important role in the accumulation of PAs in persimmon. The transient ihpRNA-induced gene silencing method developed in this study is a highly efficient and useful tool for functional analysis of persimmon genes involved in PA biosynthesis.

Expression of the Green Fluorescent Protein (GFP) in Tobacco Containing Low Nicotine for the Development of Edible Vaccine

  • Kim Young-Sook;Kim Mi-Young;Kang Tae-Jin;Kwon Tae-Ho;Jang Yong-Suk;Yang Moon-Sik
    • Journal of Plant Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.97-103
    • /
    • 2005
  • This study was carried out to obtain basic information for gene manipulation in potent edible tobacco (Nicotiana tabacum cv. TI 516). N. tabacum cv. TI 516 is a plant for a possible candidate to use as an edible vaccine, since it contains a low level of nicotine. The effective plant regeneration system through leaf disc culture was achieved using a MS basal medium supplemented with 0.1 mg $1^{-1}$ NAA and 0.5 mg $1^{-1}$ BA. In order to transform the N. tabacum cv. TI 516 with the green fluorescent protein (GFP) gene, Agrobacterium tumefaciens LBA 4404 containing the GFP gene was used. Genomic PCR confirmed the integration of the GFP gene into nuclear genome of transgenic plants. Expression of the GFP gene was identified in callus, apical meristem and root tissue of transgenic N. tabacum cv. TI 516 plants using fluorescence microscopy. Western blot analysis revealed the expression of GFP protein in the transgenic edible tobacco plants. The amount of GFP protein detected in the transgenic tobacco plants was approximately 0.16% of the total soluble plant protein (TSP), which was determined by ELISA.

Introduction of Maize Transposable Elements, Ac and Ds into the Genome of a Diploid Potato Species (옥수수 전위유전자 Ac 및 Ds의 2배체종 감자 Genome 내로의 도입)

  • 김화영;임용표
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.1
    • /
    • pp.39-45
    • /
    • 2000
  • Two maize transposable elements, immobilized Ac (iAc) and Ds, have been introduced into the genome of a diploid potato clone (Solanum tuberosum Group Phureja clone 1.22). The iAc is a modified Ac that is supposed to be unable to transpose but is expected to trans-activate the transposition of a Ds that is unable to transpose by itself. When the leaf and stem explants of in vitro shoots of the clone 1.22 were inoculated with Agrobacterium tumefaciens strains harboring binary vectors containing the iAc and the Ds, calli were formed from the explants on media containing 50 mg/L of kanamycin, and shoots were regenerated from the calli. The regenerated shoots formed roots when cultured on media containing 100 mg/L of kanamycin, whereas untransformed shoots did not form roots on the same media. The PCR amplification of the DNA's from the transgenic plants confirmed that the iAc and the Ds elements were introduced into the potato genome of 1.22.

  • PDF

Expression of Antibody Genes Specific for Human Hepatitis-B Virus in Transgenic Tabacco Plants (형질전환된 담배에서 사람 B형 간염바이러스 항체 유전자의 발현)

  • Seok Yoon KWON;Shin Je KIM;Hyo Jeong HONG;Moon Hi HAN;Chang Ho CHUNG;Ho Sul LEE;Kyung Hee PAEK
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.6
    • /
    • pp.353-356
    • /
    • 1994
  • Chimeric kappa chain and gamma chain cDNA clones (pCKS2 and pCHS2) of a monoclonal antibody specific for pre-S2 surface antigen of human hepatitis-B virus were ligated into Xbal site of plant expression vector pBKS-1. Plasmid DNA containing each of the chimeric gene were then mobilized from E, coli to Agrobacterium tumefaciens strain LBA4404. The chimeric antibody genes were then introduced into tobacco by Ti plasmid-mediated transformation. The putative Transformants were selected on medium containing kamaycin sulfate. Shoots that formed on shoot induction medium were analyzed by Western blot analysis for the expression of kappa-chain or gamma-chain genes. The Western blot analyses clearly showed that the introduced genes were stably expressed in transgenic plants.

  • PDF

Metabolic Engineering of Indole Glucosinolates in Chinese Cabbage Plants by Expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1

  • Zang, Yun-Xiang;Lim, Myung-Ho;Park, Beom-Seok;Hong, Seung-Beom;Kim, Doo Hwan
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.231-241
    • /
    • 2008
  • Indole glucosinolates (IG) play important roles in plant defense, plant-insect interactions, and stress responses in plants. In an attempt to metabolically engineer the IG pathway flux in Chinese cabbage, three important Arabidopsis cDNAs, CYP79B2, CYP79B3, and CYP83B1, were introduced into Chinese cabbage by Agrobacterium-mediated transformation. Overexpression of CYP79B3 or CYP83B1 did not affect IG accumulation levels, and overexpression of CYP79B2 or CYP79B3 prevented the transformed callus from being regenerated, displaying the phenotype of indole-3-acetic acid (IAA) overproduction. However, when CYP83B1 was overexpressed together with CYP79B2 and/or CYP79B3, the transformed calli were regenerated into whole plants that accumulated higher levels of glucobrassicin, 4-hydroxy glucobrassicin, and 4-methoxy glucobrassicin than wild-type controls. This result suggests that the flux in Chinese cabbage is predominantly channeled into IAA biosynthesis so that coordinate expression of the two consecutive enzymes is needed to divert the flux into IG biosynthesis. With regard to IG accumulation, overexpression of all three cDNAs was no better than overexpression of the two cDNAs. The content of neoglucobrassicin remained unchanged in all transgenic plants. Although glucobrassicin was most directly affected by overexpression of the transgenes, elevated levels of the parent IG, glucobrassicin, were not always accompanied by increases in 4-hydroxy and 4-methoxy glucobrassicin. However, one transgenic line producing about 8-fold increased glucobrassicin also accumulated at least 2.5 fold more 4-hydroxy and 4-methoxy glucobrassicin. This implies that a large glucobrassicin pool exceeding some threshold level drives the flux into the side chain modification pathway. Aliphatic glucosinolate content was not affected in any of the transgenic plants.

Transformation of Fuji Apple Plant Harboring the Coat Protein Gene of Cucumber mosaic virus

  • Lee, C.H.;Hyung, N.I.;Lee, G.P.;Choi, J.Y.;Kim, C.S.;Choi, S.H.;Jang, I.O.;Han, D.H.;Ryu, K.H.
    • The Plant Pathology Journal
    • /
    • v.19 no.3
    • /
    • pp.162-165
    • /
    • 2003
  • Transformation of Fuji apple (Malus domestica 'Fuji') was performed using Agrobacterium tumefaciens harboring a coat protein (CP) gene of Cucumber mosaic virus (CMV). A plasmid DNA containing the virus CP and NPT II genes was introduced into the loaves of apple by th e Agrobacterium - mediated transformation procedure. Regenerated transformants of the apple were obtained by kanamycin resistance conferred by the introduced NPT II gene. PCR analysis showed that 3 out of 20 putatively selected R0 plant lines contain the CMV-CP gene. Nine putative transgenic lines out of 20 lines were investigated with the PCR analysis; 5 regenerants produced a 450 bp DNA band and 3 regenerants showed a 671 bp DNA band for the NPT II and CMV-CP genes, respectively. Southern hybyidization results demonstrate the successful integration of the CMV-CP gene into the genome of the apple. This is the first report on the generation of useful vius resistance source of transgenic apple for molecular breeding program.