• Title/Summary/Keyword: Agriculture model

Search Result 1,985, Processing Time 0.027 seconds

The Contamination Characteristics of BTEX and TPH Components in Silty Soils with the Oil Leakage Event from Point Source (점오염원 형태의 유류누출 사건에 의한 실트질 토양층에서 BTEX와 TPH 성분의 오염도 연구)

  • Kang, Dong-Hwan;Chung, Sang-Yong;Go, Dong-Ho
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.393-402
    • /
    • 2006
  • The contamination characteristics of BTEX and TPH components in silty soils with the oil leakage event from point source were studied. The over ratios of three soil pollution standard for TPH component were $1.5{\sim}1.7$ times higher than that of BTEX component. The mean and maximum values of BTEX and TPH components with sample points were B-zone > A-zone > C-zone, and the highest concentrations were measured at $1{\sim}2m$ depth below surface. BTEX and TPH components were increased with linear distance in zone within 120 m and 80 m from point source. For the zone more than 120 m, BTEX and TPH concentrations were under soil pollution standard. The cutoff values of indicator kriging using BTEX and TPH components were defined as confirmative limit, warn- ing limit and counterplan limit. The variograms of indicator-transformed data were selected linear model. The contamination ranges of BTEX and TPH components using confirmative limit and warning limit were estimated similar, but the contamination range of those using counterplan limit was much reduced. The maximum contamination probabilities were estimated by probability maps usinB confirmative limit, warning limit and counterplan limit. The maximum contamination probabilities with three soil pollution standard were estimated 26%, 26% and 13% for BTEX component, and 44%, 38% and 26% for TPH component.

Substrate Quality Effects on Decomposition of Three Livestock Manure Composts with Similar Stability Degree in an Acid Loamy Soil

  • Lim, Sang-Sun;Jung, Jae-Woon;Choi, Woo-Jung;Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.527-533
    • /
    • 2011
  • Decomposition of compost applied to soils is affected basically by its biological stability; but, many other chemical properties of the compost may also influence compost organic-C mineralization. This study was conducted to investigate the principal substrate quality factors of composts that determine C mineralization of compost with similar stability degree (SD). Three composts samples with similar SD but different chemical properties such as pH, C/N, $K_2SO_4$-extractable C, and molar ratio of $NH_4^+$ to $NO_3^-$ were mixed with an acid loamy soil and $CO_2$ emission was monitored during the laboratory incubation for 100 days. Temporal pattern of cumulative compost organic-C mineralization expressed as % of total organic C ($C_{%\;TOC}$) followed double exponential first order kinetics model and the $C_{%\;TOC}$ ranged from 4.8 to 11.8% at the end of incubation. The pattern of C%TOC among the composts was not coincident with the SD pattern (40.1 to 58.6%) of the composts; e.g. compost with the lowest SD resulted in the least $C_{%\;TOC}$ and vice versa. This result indicates that SD of compost can not serve as a concrete predictor of compost mineralization as SD is subject not only to maturity of compost but also to characteristics of co-composting materials such as rice hull (low SD) and sawdust (high SD). Meanwhile, such pattern of $C_{%\;TOC}$ collaborated with pH, C/N, $K_2SO_4$-extractable C, and molar ratio of $NH_4^+$ to $NO_3^-$ of the composts that are regarded as chemical indices of the progress of composting. Therefore, for better prediction of compost mineralization in soils, it is necessary to consider both SD and other chemical indices (pH, C/N, and molar ratio of $NH_4^+$ to $NO_3^-$).

Prediction of Rice Yield Loss by Aneilema keisak and Aeschynomene indica Competition in Flooded Direct-Seeded Rice (벼 담수직파재배에서 사마귀풀과 자귀풀 경합에 따른 수량감소 예측)

  • Cho, Seung-Hyun;Lee, Ki-Kwon;Song, Young-Eun;Lee, Deok-Ryeol;Jeung, Jong-Sung;Song, Young-Ju;Chun, Jae-Chul;Moon, Byeong-Chul
    • Weed & Turfgrass Science
    • /
    • v.1 no.4
    • /
    • pp.31-37
    • /
    • 2012
  • This study was conducted to make the rice yield prediction model system as affected by densities of Aneilema keisak and Aeschynomene indica and to determine their economic threshold levels in flooded direct-seeded rice. When the density of A. keisak was 8 plants per $m^2$, the yield of rice reduced to 8% and as the density increased up to 96 plants per $m^2$, the reduced rate of rice yield reached to 45% and in A. indica, the reduced rate of rice yield were 20 and 77%, respectively. The rice yield loss models of A. keisak and A. indica were predicted as Y=553.2 kg (1+0.00913X), $R^2=0.912^{**}$ and Y=567.9 kg/(1+0.04434X), $R^2=0.961^{**}$, respectively. Economic threshold levels calculated using cousens' equation were 3.0 plants per $m^2$ in A. keisak and 0.6 plants per $m^2$ in A. indica.

Restriction of Ca2+ deficiency-like symptoms by co-expressing a Ca2+ transporter and a Ca2+-binding protein in tomato (토마토에서 칼슘수송체와 칼슘결합단백질 공동발현에 의한 칼슘결핍유사증상의 완화)

  • Han, Jeung-Sul;Kang, Ho-Ju;Kim, Chang-Kil
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.549-555
    • /
    • 2010
  • Here we focused on tip-burn and blossom-end rot (BER) symptoms in the tomato plants expressing the constitutively active form of $Ca^{2+}/H^+$ antiporter (sCAX1) and/or a Ca-binding protein (calreticulin, CRT) genes during their whole growth period. Conclusively we demonstrated that CRT is able to suppress the tip-burn and BER symptoms that were induced by sCAX1. Under poor nutrition condition, tomato plants overexpressing sCAX1 showed severe necrotic collapses in both roots and shoot polar tissues, which are in accordance with $Ca^{2+}$ deficient symptoms frequently observed in an agricultural cultivation of tomato. Reciprocal grafting trials using sCAX1 and wild type plants revealed that the tip-burn symptom by sCAX1 overexpression is not caused by hindrance of $Ca^{2+}$ uptake from soil. We constructed CRT overexpressing transgenic tomatoes, and crossed them with sCAX1 transgenic plants to investigate the effects of CRT on the symptoms of sCAX1 transgenic plants. Co-expression of sCAX1 and CRT significantly suppressed the $Ca^{2+}$ deficient symptoms of sCAX1 transgenic plants. Those results suggest the model that $Ca^{2+}$ homeostasis disturbed by the overexpression of sCAX1 may be suppressed by the co-expression of CRT.

A Time Slot Assignment Scheme for Sensor Data Compression (센서 데이터의 압축을 위한 시간 슬롯 할당 기법)

  • Yeo, Myung-Ho;Kim, Hak-Sin;Park, Hyoung-Soon;Yoo, Jae-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.11
    • /
    • pp.846-850
    • /
    • 2009
  • Recently, wireless sensor networks have found their way into a wide variety of applications and systems with vastly varying requirements and characteristics such as environmental monitoring, smart spaces, medical applications, and precision agriculture. The sensor nodes are battery powered. Therefore, the energy is the most precious resource of a wireless sensor network since periodically replacing the battery of the nodes in large scale deployments is infeasible. Energy efficient mechanisms for gathering sensor readings are indispensable to prolong the lifetime of a sensor network as long as possible. There are two energy-efficient approaches to prolong the network lifetime in sensor networks. One is the compression scheme to reduce the size of sensor readings. When the communication conflict is occurred between two sensor nodes, the sender must try to retransmit its reading. The other is the MAC protocol to prevent the communication conflict. In this paper, we propose a novel approaches to reduce the size of the sensor readings in the MAC layer. The proposed scheme compresses sensor readings by allocating the time slots of the TDMA schedule to them dynamically. We also present a mathematical model to predict latency from collecting the sensor readings as the compression ratio is changed. In the simulation result, our proposed scheme reduces the communication cost by about 52% over the existing scheme.

A Time Series Analysis and Forecasting of Chestnut Prices (밤 가격(價格)의 시계열분석(時系列分析)과 예측(豫測)에 관(關)한 연구(硏究))

  • Cho, Eung Hyouk
    • Journal of Korean Society of Forest Science
    • /
    • v.73 no.1
    • /
    • pp.70-75
    • /
    • 1986
  • The secular trend and seasonal variation of chestnut prices have been analyzed, and the production and price for the next two decades (1985-2004) have been forecasted by the derived equation model. The results of the study can be summarized as follows; 1) The chestnut prices went up at the rate of 10.95% per annum during 1965-1972, but, due to excessive supply of chestnuts, went down at the rate of 7.25% during 1973-1984. 2) In a year, the prices were lowest at the harvesting season, especially on October, and highest on July. Such a seasonal fluctuations of chestnut prices tend to be even with the passage of time, but the range of fluctuation is still wide. 3) It was forecasted under certain premises that the annual chestnut production will be increased by 99,000 tons in 1992, but the amount will fall rapidly to about 23,000 tons in 2004. The prices will be similar to the present level or have slightly upward Tendency until 1992, but this will be rapidly raised thereafter.

  • PDF

Biomass and Net Primary Production of Quercus variabilis Natural Forest Ecosystems in Gongju, Pohang, and Yangyang Areas (공주(公州), 포항(浦港), 그리고 양양(襄陽) 지역(地域) 굴참나무 천연림(天然林) 생태계(生態系)의 물질생산(物質生産)에 관(關)한 연구(硏究))

  • Park, Gwan-Soo;Lee, Sung-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.6
    • /
    • pp.692-698
    • /
    • 2001
  • This study has been carried out to estimate aboveground biomass and net primary production(NPP) in an average 41-years-old Quercus variabilis stand of Gongju area, 45-years-old Quercus variabilis stand of Pohang area, and 54-years-old Quercus variabilis stand of Yangyang area. Ten sample trees were cut in each forest and soil samples were collected in July to August, 2000. Estimation for aboveground biomass and net primary production were made by the equation model $Wt=aD^b$ where Wt is oven dry weight in kg and D is DBH in cm. Total aboveground biomass was 91.31ton/ha in Gongju area, 207.6ton/ha in Pohang area, and 71.39ton/ha in Yangyang area. The aboveground biomass 207.6ton/ha in Pohang area is the highest biomass production among the amount of biomass in Quercus variabils stands reported in Korea. The proportion of each tree component to total aboveground biomass was high in order of bolewood, bolebark, branches and leaves in the three forests. Aboveground total net primary production was estimated at 7.8ton/ha in Gongju area, 11.5ton/ha in Pohang area, and 6.40ton/ha in Yangyang area. There were at least 2 times higher total aboveground biomass in Pohang area than in the Gongju and Yangyang areas because of climate difference among the study areas.

  • PDF

Bhumipol Dam Operation Improvement via smart system for the Thor Tong Daeng Irrigation Project, Ping River Basin, Thailand

  • Koontanakulvong, Sucharit;Long, Tran Thanh;Van, Tuan Pham
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.164-175
    • /
    • 2019
  • The Tor Tong Daeng Irrigation Project with the irrigation area of 61,400 hectares is located in the Ping Basin of the Upper Central Plain of Thailand where farmers depended on both surface water and groundwater. In the drought year, water storage in the Bhumipol Dam is inadequate to allocate water for agriculture, and caused water deficit in many irrigation projects. Farmers need to find extra sources of water such as water from farm pond or groundwater as a supplement. The operation of Bhumipol Dam and irrigation demand estimation are vital for irrigation water allocation to help solve water shortage issue in the irrigation project. The study aims to determine the smart dam operation system to mitigate water shortage in this irrigation project via introduction of machine learning to improve dam operation and irrigation demand estimation via soil moisture estimation from satellite images. Via ANN technique application, the inflows to the dam are generated from the upstream rain gauge stations using past 10 years daily rainfall data. The input vectors for ANN model are identified base on regression and principal component analysis. The structure of ANN (length of training data, the type of activation functions, the number of hidden nodes and training methods) is determined from the statistics performance between measurements and ANN outputs. On the other hands, the irrigation demand will be estimated by using satellite images, LANDSAT. The Enhanced Vegetation Index (EVI) and Temperature Vegetation Dryness Index (TVDI) values are estimated from the plant growth stage and soil moisture. The values are calibrated and verified with the field plant growth stages and soil moisture data in the year 2017-2018. The irrigation demand in the irrigation project is then estimated from the plant growth stage and soil moisture in the area. With the estimated dam inflow and irrigation demand, the dam operation will manage the water release in the better manner compared with the past operational data. The results show how smart system concept was applied and improve dam operation by using inflow estimation from ANN technique combining with irrigation demand estimation from satellite images when compared with the past operation data which is an initial step to develop the smart dam operation system in Thailand.

  • PDF

Exploring sustainable resources utilization: Interlink between food waste generation and water resources conservation

  • Adelodun, Bashir;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.232-232
    • /
    • 2019
  • The persistence of drought periods and water scarcity is a growing public concern, as climate change projections indicate a more critical scenario in the future. The sustainability of water resources for the increasing population, and to ensuring crop production will unarguably be a daunting task for the water resources managers, with a projected 9.8 billion people by 2050 as well as the need to increase food production by 70 to 100%. Consequently, there is a need for significant irrigation water use for more crop production in the face of stiff competition among water users. However, the available natural resources are already over-constrained, and the allocation of more resources for food production is not feasible. Currently, about two-thirds of global water withdrawer is used by the agricultural sector while 48% of water resources in Korea is used for agricultural production. Despite the apparent ecological deficit and unfavorable conditions of resources utilization, a staggering amount of food waste occurs in the country. Moreover, wastage of food translates to waste of all the resources involved in the food production including water resources. Food waste can also be considered a serious potential for economic and environmental problems. Hence, exploring an alternative approach to efficient resources utilization in a more sustainable way can ensure considerable resources conservation. We hypothesized that reducing food waste will decline the demand for food production and consequently reduce the pressure on water resources. We investigated the food wastage across the food supply chain using the top-down datasets based on the FAO mass balance model. Furthermore, the water footprint of the estimated food wastage was assessed using the representative of selected food crops. The study revealed that the average annual food wastage across the food supply chain is 9.05 million tonnes, signifying 0.51 kg/capita/day and 48% of domestic food production. Similarly, an average of 6.29 Gm3 per annum of water resources was lost to food wastage, which translates to 40% of the total allotted water resources for agriculture in the country. These considerable resources could have been conserved or efficiently used for other purposes. This study demonstrated that zero food waste generation would significantly reduce the impact on freshwater resources and ensure its conservation. There is a need for further investigation on the food waste study using the bottom-up approach, specifically at the consumer food waste, since the top-down approach is based on estimations and many assumptions were made.

  • PDF

Exploring sustainable resources utilization: Interlink between food waste generation and water resources conservation

  • Adelodun, Bashir;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.408-408
    • /
    • 2019
  • The persistence of drought periods and water scarcity is a growing public concern, as climate change projections indicate a more critical scenario in the future. The sustainability of water resources for the increasing population, and to ensuring crop production will unarguably be a daunting task for the water resources managers, with a projected 9.8 billion people by 2050 as well as the need to increase food production by 70 to 100%. Consequently, there is a need for significant irrigation water use for more crop production in the face of stiff competition among water users. However, the available natural resources are already over-constrained, and the allocation of more resources for food production is not feasible. Currently, about two-thirds of global water withdrawer is used by the agricultural sector while 48% of water resources in Korea is used for agricultural production. Despite the apparent ecological deficit and unfavorable conditions of resources utilization, a staggering amount of food waste occurs in the country. Moreover, wastage of food translates to waste of all the resources involved in the food production including water resources. Food waste can also be considered a serious potential for economic and environmental problems. Hence, exploring an alternative approach to efficient resources utilization in a more sustainable way can ensure considerable resources conservation. We hypothesized that reducing food waste will decline the demand for food production and consequently reduce the pressure on water resources. We investigated the food wastage across the food supply chain using the top-down datasets based on the FAO mass balance model. Furthermore, the water footprint of the estimated food wastage was assessed using the representative of selected food crops. The study revealed that the average annual food wastage across the food supply chain is 9.05 million tonnes, signifying 0.51 kg/capita/day and 48% of domestic food production. Similarly, an average of $6.29Gm^3$ per annum of water resources was lost to food wastage, which translates to 40% of the total allotted water resources for agriculture in the country. These considerable resources could have been conserved or efficiently used for other purposes. This study demonstrated that zero food waste generation would significantly reduce the impact on freshwater resources and ensure its conservation. There is a need for further investigation on the food waste study using the bottom-up approach, specifically at the consumer food waste, since the top-down approach is based on estimations and many assumptions were made.

  • PDF