DOI QR코드

DOI QR Code

Restriction of Ca2+ deficiency-like symptoms by co-expressing a Ca2+ transporter and a Ca2+-binding protein in tomato

토마토에서 칼슘수송체와 칼슘결합단백질 공동발현에 의한 칼슘결핍유사증상의 완화

  • Han, Jeung-Sul (Department of Ecological Environment Conservation, College of Ecology & Environment Science, Kyungpook National University) ;
  • Kang, Ho-Ju (Haman Agricultural Development & Technology Center) ;
  • Kim, Chang-Kil (School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University)
  • 한증술 (경북대학교 생태환경대학 생태환경보전) ;
  • 강호주 (경상남도 함안군 농업기술센터) ;
  • 김창길 (경북대학교 농업생명과학대학 응용생명과학부)
  • Received : 2010.11.01
  • Accepted : 2010.11.15
  • Published : 2010.12.31

Abstract

Here we focused on tip-burn and blossom-end rot (BER) symptoms in the tomato plants expressing the constitutively active form of $Ca^{2+}/H^+$ antiporter (sCAX1) and/or a Ca-binding protein (calreticulin, CRT) genes during their whole growth period. Conclusively we demonstrated that CRT is able to suppress the tip-burn and BER symptoms that were induced by sCAX1. Under poor nutrition condition, tomato plants overexpressing sCAX1 showed severe necrotic collapses in both roots and shoot polar tissues, which are in accordance with $Ca^{2+}$ deficient symptoms frequently observed in an agricultural cultivation of tomato. Reciprocal grafting trials using sCAX1 and wild type plants revealed that the tip-burn symptom by sCAX1 overexpression is not caused by hindrance of $Ca^{2+}$ uptake from soil. We constructed CRT overexpressing transgenic tomatoes, and crossed them with sCAX1 transgenic plants to investigate the effects of CRT on the symptoms of sCAX1 transgenic plants. Co-expression of sCAX1 and CRT significantly suppressed the $Ca^{2+}$ deficient symptoms of sCAX1 transgenic plants. Those results suggest the model that $Ca^{2+}$ homeostasis disturbed by the overexpression of sCAX1 may be suppressed by the co-expression of CRT.

본 연구는 칼슘 수송체의 하나인 sCAX1과 칼슘결합단백질의 하나인 CRT가 토마토에서 발현했을 때 tip-burn과 배꼽썩음병 (BER)이 토마토의 전 생육기간에 걸쳐 어떠한 양상으로 나타나는지를 관찰하는 것에 초점을 맞추어 수행하였고, 최종 연구 결과는 CRT 공동발현이 sCAX1 발현에 의해 야기된 병징을 억제시킬 수 있음을 확인시켰다. 양분공급이 불량한 환경하에 놓인 sCAX1 단독 발현 토마토 식물체는 그 근단 조직, 정단 조직 및 과실의 암술부착부위 조직에 토마토 재배 농가포장에서 빈번하게 관찰되는 칼슘결핍 증상과 일치하는 괴사현상을 나타내었다. sCAX1 형질전환체와 비형질전화체를 각각 대목과 접수로 달리 사용한 교호접목 실험을 통해 sCAX1 발현에 따른 tip-burn 병징이 토양으로부터의 칼슘이온 흡수에 장애를 받아 생긴 결과가 아님을 확인하였다. 형질전환을 통해 CRT 발현 토마토를 획득한 후 CRT가 sCAX1에 의한 불량한 특성 발현을 제어할 수 있는지 확인하기 위하여 양자간 교배조합을 작성하였다. sCAX1과 CRT를 토마토에서 공동발현 시켰을 때 완벽하지는 않지만 양극 조직의 괴사와 BER이 뚜렷하게 감소되었다. 본 연구의 결과를 바탕으로 sCAX1 발현에 의해 방해 받은 세포 내 칼슘 이온 관련 어떤 기구는 CRT 공동발현을 통해 복구될 수 있다는 하나의 모델을 제시할 수 있을 것이다.

Keywords

References

  1. Baluska F, Samaj J, Napier R, Volkmann D (1999) Maize calreticulin localizes preferentially to plasmodesmata in root apex. Plant J 19:481-488 https://doi.org/10.1046/j.1365-313X.1999.00530.x
  2. Chen PY, Wang CK, Soong SC, To KY (2003) Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Mol Breeding 11: 287-293 https://doi.org/10.1023/A:1023475710642
  3. Cheng NH, Pittman JK, Barkla BJ, Shigaki T, Hirschi KD (2003) The Arabidopsis cax1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters. Plant Cell 15:347-364 https://doi.org/10.1105/tpc.007385
  4. Chung MY, Han JS, Giovannoni J, Liu Y, Kim CK, Lim KB, Chung JD (2010) Modest calcium increase in tomatoes expressing a variant of Arabidopsis cation/$H^{+}$ antiporter. Plant Biotechnol Rep 4:15-21 https://doi.org/10.1007/s11816-009-0112-9
  5. Doerner P, Jorgensen JE, You R, Steppuhn J, Lamb C (1996) Control of root growth and development by cyclin expression. Nature 380:520-523 https://doi.org/10.1038/380520a0
  6. Hirschi KD (2004) The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol 136:2438-2442 https://doi.org/10.1104/pp.104.046490
  7. Hirschi KD, Zhen RG, Cunningham KW, Rea PA, Fink GR (1996) CAX1, an $H^{+}/Ca^{2+}$ antiporter from Arabidopsis. Proc Natl Acad Sci USA 93:8782-8786 https://doi.org/10.1073/pnas.93.16.8782
  8. Ho LC, White PJ (2005) A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Ann Bot 95:571-581 https://doi.org/10.1093/aob/mci065
  9. Knight H, Knight MR (2001) Abiotic stress signaling pathways: specificity and cross-talk. Trends Plant Sci 6:262-267 https://doi.org/10.1016/S1360-1385(01)01946-X
  10. Krause KH, Michalak M (1997) Calreticulin. Cell 88:439-443 https://doi.org/10.1016/S0092-8674(00)81884-X
  11. Lee LY, Kononov ME, Bassuner B, Frame BR, Wang K, Gelvin SB (2007) Novel plant transformation vectors containing the Superpromoter. Plant Physiol 145:1294-1300 https://doi.org/10.1104/pp.107.106633
  12. Marschner H (1995) Mineral nutrition of higher plants. Academic Press, New York
  13. Morris J, Nakata PA, McConn M, Brock A, Hirschi KD (2007) Increased calcium bioavailability in mice fed genetically engineered plants lacking calcium oxalate. Plant Mol Biol 64:613-618 https://doi.org/10.1007/s11103-007-9180-9
  14. Park S, Cheng NH, Pittman JK, Yoo KS, Park J, Smith RH, Hirschi KD (2005) Increased calcium levels and prolonged shelf life in tomatoes expressing Arabidopsis $H^{+}/Ca^{2+}$ transporters. Plant Physiol 139:1194-1206 https://doi.org/10.1104/pp.105.066266
  15. Park SH, Kim CK, Pike LM, Smith RH, Hirschi KD (2004) Increased calcium in carrots by expression of an Arabidopsis $H^{+}/Ca^{2+}$ transporter. Mol Breeding 14:275-282 https://doi.org/10.1023/B:MOLB.0000047773.20175.ae
  16. Park SH, Morris JL, Park JE, Hirschi KD, Smith RH (2003) Effiecient and genotype-independent Agrobacterium-mediated tomato transformation. J Plant Physiol 160:1253-1257 https://doi.org/10.1078/0176-1617-01103
  17. Persson S, Wyatt SE, Love J, Thompson WF, Robertson D, Boss WF (2001) The $Ca^{2+}$status of the endoplasmic reticulum is altered by induction of calreticulin expression in transgenic plants. Plant Physiol 126:1092-1104 https://doi.org/10.1104/pp.126.3.1092
  18. Pittman JK, Hirschi K (2003) Don’t shoot the (second) messenger: endomembrane transporters and binding proteins modulate cytosolic $Ca^{2+}$ levels. Curr Opin Plant Biol 6:257-262 https://doi.org/10.1016/S1369-5266(03)00036-0
  19. Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:s401-s417
  20. Shigaki T, Cheng NH, Pittman K, Hirschi K (2001) Structural determinants of $Ca^{2+}$ transport in the Arabidopsis $H^{+}/Ca^{2+}$ antiporter CAX1. J Biol Chem 46:43152-43159
  21. White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92: 487-511 https://doi.org/10.1093/aob/mcg164
  22. Wyatt SE, Tsou PL, Robertson D (2002) Expression of the high capacity calcium-binding domain of calreticulin increases bioavailable calcium stores in plants. Transgenic Res 11:1-10 https://doi.org/10.1023/A:1013917701701