• Title/Summary/Keyword: Agricultural land use

Search Result 805, Processing Time 0.031 seconds

Effects of Gypsum and Fresh Cattle Manure on Physico-chemical Properties of Soil and Yield of Forage Crop in Hwaong Reclaimed Land

  • Jang, Jae-Eun;Kang, Chang-Sung;Park, Jung-Soo;Shim, Jae-Man;Kim, Hee-Dong;Kim, Sun-Jae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.1
    • /
    • pp.31-39
    • /
    • 2017
  • The effects of application of gypsum and fresh cattle manure on the yield of forage crop were investigated in Hwaong reclaimed land in Korea for 3 years from 2011 to 2013. This study was conducted to develop the practical application method of livestock manure as a fertilization source and a soil physico-chemical ameliorator for the cultivation of forage crop $Sorghum{\times}Sudangrass$ hybrid in newly reclaimed tidal land soil. Treatments with six applications were established with three replications; chemical fertilizer (CF), gypsum (G) $20Mg\;ha^{-1}$, G+fresh cattle manure (FCM) 100%, G+FCM 200%, G+FCM 300% and FCM 100% which referred to the application rate equivalent to the recommended amount of phosphate fertilization by soil test. The combined treatments of G+FCM increased soil organic matter, $Av.P_2O_5$ and exchangeable $Ca^{2+}$ contents while decreased exchangeable $Na^+$ and $Mg^{2+}$. The soil bulk density, soil hardness and soil aggregate formation were improved by G+FCM treatments. The dry matter yields of $Sorghum{\times}Sudangrass$ hybrid were significantly increased in proportion to the application rate of FCM. The phosphorus use efficiency showed the highest in the application level of G+FCM 100%, which seemed to be the results of reduced nutrient use efficiency by nutrient immobilization, leaching etc. when applied excessive amount of fresh animal manure.

ANALYSIS OF NON-POINT SOURCE POLLUTION LOADING IN A SMALL RURAL WATERSHED USING HIGH SPATIAL RESOLUTION IMAGE

  • Park, Jong-Yoon;Lee, Mi-Seon;Kim, Seong-Joon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.229-233
    • /
    • 2007
  • This study is to test the applicability of QuickBird image for non-point source pollution assessment. SWAT (Soil and Water Assessment Tool) model was adopted and the model was calibrated for a stream watershed of 255.4 $km^2$ Landsat land use data. For model application with QuickBird image, a precise agricultural land use map of 1.16 $km^2$ area located in the upstream watershed was produced by field investigation. The model was run with the combination of land use and soil map scales (1:5,000, 1:25,000 and 1:50,000). The results were compared and analyzed for the contribution of non-point source pollution by the land use scale and contents.

  • PDF

Polycyclic Aromatic Hydrocarbons (PAHs) in Korean Soil: Distribution by Depth and Land Use (토양깊이 및 토지이용에 따른 다핵방향족탄화수소 (PAHs)의 토양 중 분포)

  • Nam, Jae-Jak;Hong, Suk-Young;Lee, Jong-Sik;So, Kyu-Ho;Lee, Sang-Hak
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.2 s.57
    • /
    • pp.129-135
    • /
    • 2007
  • Polycyclic aromatic hydrocarbons(PAHs) have been analyzed to assess vertical distribution of them with different land uses. The soils were collected from three layers; surface $(0{\sim}5cm)$, intermediate $(6{\sim}10cm)$, and deep $(11{\sim}15cm)$ layer, respectively considering land use; paddy, upland, and mountain in each site. Total 89 samples of soil from 10 sites were analyzed. Overall mean of ${\sum}PAHs$ were 137 (range $8.87{\sim}625{\mu}g\;kg^{-1}$), 203 (range $16.5{\sim}645{\mu}g\;kg^{-1}$), and $83.4{\mu}g\;kg^{-1}$ (range $6.65{\sim}667{\mu}g\;kg^{-1}$) for paddy, upland, and mountain soil, respectively. The dominant PAHs were fluoroanthene/benzo(b)fluoroanthene>pyrene>indeno(1, 2, 3-cd) pyrene in paddy, fluoroanthene/pyrene>benzo(b)fluoroanthene>chrysene in upland, and benzo(b)fluoroanthene>pyrene>chrysene in mountain soil, whereas the profile was quite similar for each other except that indeno(1, 2, 3-cd)pyrene and benzo(ghi)perylene are relatively higher in the paddy soils. Although the concentration gradient by depth was not observed in the paddy and upland soils because perturbation of soil layer by tillage, significant decrease was in the deep layer relative to the surface and intermediate layer. However, the concentration gradient of PAHs by soil depth was clearly shown in mountain soil without experiencing disturbance of tillage.

Analysis of urbanization factor in river boundary using aerial image

  • Lee, Geun-Sang;Lee, Hyun-Seok;Chae, Hyo-Sok;Hwang, Eui-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.421-425
    • /
    • 2006
  • It can be important framework data to monitor the change of land-use pattern of river boundary in design and management of river. This study analyzed the change of land-use pattern of Gab and Yudeung River using time-series aerial images. To do this, we carried out radiation and geometric correction of image, and estimated land-use changes in inland and floodplain. As the analysis of inland, the ratio of residential, commercial, industrial, educational and public area, that is urbanized element, increases, but that of agricultural area shows a decline on the basis of 1990. Also, Minimum Distance Method, which is a kind of supervised classification method, is applied to extract water-body and sand bar layer in floodplain. As the analysis of land-use, the ratio of level-upped riverside land and water-body increases, but that of sand bar decreases. These time-series land use information can be important decision making data to evaluate the urbanization of river boundary, and especially it gives us goodness in river development project such as the composition of ecological habitat.

Analyzing the Future Land Use Change and its Effects for the Region of Yangpyeong-gun and Yeoju-gun in Korea with the Dyna-CLUE Model (Dyna-CLUE 모델을 이용한 양평·여주 지역의 토지이용 변화 예측 및 평가)

  • Lee, DongKun;Ryu, DaeHo;Kim, HoGul;Lee, SangHouck
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.6
    • /
    • pp.119-130
    • /
    • 2011
  • Land-use changes have made considerable impacts on humans and nature such as biodiversity and ecosystem services. It is recognized as important elements for land use planning and regional natural resources conservation to identify the major causes of land use changes and to predict a process of changes and effects. This study, by using a spatially explicit Dyna-CLUE model, analyzed correlations between driving factors, quantified location characteristics of different land use types using logistic regression analysis and examined future land use changes and its effects in Yangpyeong and Yeoju region. We expected land use changes based on the three scenarios with different future land demands and simulated future changes for spatial variations of land use for the 20 years. The outcomes shows that larger change was found in agricultural areas than forest areas, based on the change in built-up areas. The changes in forest areas, which were mainly occurred in edge area, were expected to affect a large impact on its ecotone. It was found to be the importance of the management of forest edge and the necessity of the environmentally sound and sustainable development in order to conserve natural resources of the region.

Load factor of Nonpoint Source Pollutant owing to Land Use in Bangdong Reservoir Watershed (방동저수지 유역의 토지이용에 따른 비점오염 부하발생 원단위 산정)

  • Moon, Jong Pil;Kim, Tai Cheol;Ahn, Byoung Gi
    • Korean Journal of Agricultural Science
    • /
    • v.26 no.2
    • /
    • pp.61-69
    • /
    • 1999
  • The water quality of river has been deteriorated mainly by both point source pollution and nonpoint source pollution from the watershed. Techniques to cut point source pollutants down to the level required have been developed. But, techniques of best management practices to catch the nonpoint source pollutions and to control the routine of pollutants were not successively developed. The quality of closed water system such as reservoir, lake and farm pond is irresistable to being polluted mainly by nonpoint source pollutions. In this study, the population, land use, runoff coefficient, amount of rainfall, and runoff discharge in the watershed were surveyed to investigate the characteristics of water quality such as BOD, COD, SS, T-N, and T-P. After studying the changes of water quality in the viewpoint of land use such as paddy land, residential area, upland, forest and meadow, load factors of nonpoint source pollutant were calculated in Bangdong reservoir watershed. Residential area was more severe than other land use as far as BOD, COD and SS concerned. T-N and T-P released from the paddy and upland were higher than other land use. The 45.9% of total load of nonpoint source pollution was occured during the rainy season.

  • PDF

Assessment of the Contribution of Weather, Vegetation, Land Use Change for Agricultural Reservoir and Stream Watershed using the SLURP model (I) - Preparation of Input Data for the Model - (SLURP 모형을 이용한 기후, 식생, 토지이용변화가 농업용 저수지유역과 하천유역에 미치는 기여도 평가(I) - 모형의 입력자료 구축 -)

  • Park, Geun-Ae;Lee, Yong-Jun;Shin, Hyung-Jin;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.107-120
    • /
    • 2010
  • The effect of potential future climate change on the inflow of agricultural reservoir and its impact to downstream streamflow by reservoir operation for paddy irrigation water was assessed using the SLURP (semi-distributed land use-based runoff process), a physically based hydrological model. The fundamental input data (elevation, meteorological data, land use, soil, vegetation) was collected to calibrate and validate of the SLURP model for a 366.5 $km^2$ watershed including two agricultural reservoirs (Geumgwang and Gosam) located in Anseongcheon watershed. Then, the CCCma CGCM2 data by SRES (special report on emissions scenarios) A2 and B2 scenarios of the IPCC (intergovernmental panel on climate change) was used to assess the future potential climate change. The future weather data for the year, m ms, m5ms and 2amms was downscaled by Change Factor method through bias-correction using 3m years (1977-2006) weather data of 3 meteorological stations of the watershed. In addition, the future land uses were predicted by modified CA (cellular automata)-Markov technique using the time series land use data fromFactosat images. Also the future vegetation cover information was predicted and considered by the linear regression between monthly NDVI (normalized difference vegetation index) from NOAA AVHRR images and monthly mean temperature using eight years (1998-2006) data.

Soil organic carbon variation in relation to land use changes: the case of Birr watershed, upper Blue Nile River Basin, Ethiopia

  • Amanuel, Wondimagegn;Yimer, Fantaw;Karltun, Erik
    • Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.128-138
    • /
    • 2018
  • Background: This study investigated the variation of soil organic carbon in four land cover types: natural and mixed forest, cultivated land, Eucalyptus plantation and open bush land. The study was conducted in the Birr watershed of the upper Blue Nile ('Abbay') river basin. Methods: The data was subjected to a two-way of ANOVA analysis using the general linear model (GLM) procedures of SAS. Pairwise comparison method was also used to assess the mean difference of the land uses and depth levels depending on soil properties. Total of 148 soil samples were collected from two depth layers: 0-10 and 10-20 cm. Results: The results showed that overall mean soil organic carbon stock was higher under natural and mixed forest land use compared with other land use types and at all depths ($29.62{\pm}1.95Mg\;C\;ha^{-1}$), which was 36.14, 28.36, and 27.63% more than in cultivated land, open bush land, and Eucalyptus plantation, respectively. This could be due to greater inputs of vegetation and reduced decomposition of organic matter. On the other hand, the lowest soil organic carbon stock under cultivated land could be due to reduced inputs of organic matter and frequent tillage which encouraged oxidation of organic matter. Conclusions: Hence, carbon concentrations and stocks under natural and mixed forest and Eucalyptus plantation were higher than other land use types suggesting that two management strategies for improving soil conditions in the watershed: to maintain and preserve the forest in order to maintain carbon storage in the future and to recover abandoned crop land and degraded lands by establishing tree plantations to avoid overharvesting in natural forests.

Impact of Land Use Land Cover Change on the Forest Area of Okomu National Park, Edo State, Nigeria

  • Nosayaba Osadolor;Iveren Blessing Chenge
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.3
    • /
    • pp.167-179
    • /
    • 2023
  • The extent of change in the Land use/Land cover (LULC) of Okomu National Park (ONP) and fringe communities was evaluated. High resolution Landsat imagery was used to identify the major vegetation cover/land use systems and changes around the national park and fringe communities while field visits/ground truthing, involving the collection of coordinates of the locations was carried out to ascertain the various land cover/land use types identified on the images, and the extent of change over three-time series (2000, 2010 and 2020). The change detection was analyzed using area calculation, change detection by nature and normalized difference vegetation index (NDVI). The result of the classification and analysis of the LULC Change of ONP and fringe communities revealed an alarming rate of encroachment into the protected area. All the classification features analyzed had notable changes from 2000-2020. The forest, which was the dominant LULC feature in 2000, covering about 66.19% of the area reduced drastically to 36.12% in 2020. Agricultural land increased from 6.14% in 2000 to 34.06% in 2020 while vegetation (degraded land) increased from 27.18% in 2000 to 38.89% in 2020. The magnitude of the change in ONP and surroundings showed the forest lost -247.136 km2 (50.01%) to other land cover classes with annual rate change of 10%, implying that 10% of forest land was lost annually in the area for 20 years. The NDVI classification values of 2020 indicate that the increase in medium (399.62 km2 ) and secondary high (210.17 km2 ) vegetation classes which drastically reduced the size of the high (38.07 km2 ) vegetation class. Consequent disappearance of the high forests of Okomu is inevitable if this trend of exploitation is not checked. It is pertinent to explore other forest management strategies involving community participation.

Revised Soil Survey of Yangju City in Gyunggido

  • Hyun, Byung-Keun;Sonn, Yeon-Kyu;Kim, Keun-Tae;Cho, Hyun-Jun;Jung, Sug-Jae;Choi, Jung-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.2
    • /
    • pp.81-92
    • /
    • 2017
  • Recently, agricultural lands have decreased sharply, which was caused by huge housing site, urbanization, land consolidation, and road construction etc. In particular, Yangju city near Seoul city has the most severe land use change in Korea. Therefore, we analyzed changes of land use, soil properties, and soil information in order to provide the basic soil information and soil management practices in this city. The area of crop cultivated land in Korea (2015) reduced by 12,090 ha compared to ones from the previous year (2014). The paddy field decreased by 25,421 ha but, upland field increased by 13,331 ha. One of the reasons for the reduction of the paddy field was converting paddy field to upland (20,916 ha) > others (3,056) > building (2,571) > public facilities (847) > idle land (217). But, reasons for increase of upland field were switching paddy to upland (20,916 ha) > land developed (634). The main reason of converting paddy field to upland was changing from rice to more profitable speciality crops or pulses. The cropland area (paddy fields, upland, orchard) of Yangju city reduced by 1,412 ha (2015/2014). The ratio of cropland area in each city reduced by 22.9% dramatically compared 2015 to 1999. The paddy fields located in alluvial plains in Yangju city were changed into upland or green house. The drainage classes of soil have been deteriorated because the flows of water were intercepted by road construction and other disturbance to water flows. In particular, paddy fields have been changed to not only upland, orchard, greenhouse cultivation but also to fallow and soil dressing on paddy in Yangju city. To analyze result of soil survey of Yangju city, 858 soil codes (soil phases) were used and the area was 105.17ha. The number of soil series increased from 60 to 65, and that of soil phase increased from 105 to 124. The largest increased area was Noegog soil series. 125.7ha of Neogog soil series was incorporated from the existing Sachon, Yecheon and Eungog soil series. The soil suitability class of paddy field in Ogjung huge housing site of Yangju city was the 4th grade for 32.6% of the area. The soil suitability classes of upland were 2nd and 3rd grade for 72.4% of the area. Farm land with high quality should be conserved by related law.