• Title/Summary/Keyword: Agricultural ecology

Search Result 868, Processing Time 0.027 seconds

Population Phenology and an Early Season Adult Emergence model of Pumpkin Fruit Fly, Bactrocera depressa (Diptera: Tephritidae) (호박과실파리 발생생태 및 계절초기 성충우화시기 예찰 모형)

  • Kang, Taek-Jun;Jeon, Heung-Yong;Kim, Hyeong-Hwan;Yang, Chang-Yeol;Kim, Dong-Soon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.4
    • /
    • pp.158-166
    • /
    • 2008
  • The pumpkin fruit fly, Bactrocera depressa (Tephritidae: Diptera), is one of the most important pests in Cucurbitaceae plants. This study was conducted to investigate the basic ecology of B. depressa, and to develop a forecasting model for predicting the time of adult emergence in early season. In green pumpkin producing farms, the oviposition punctures caused by the oviposition of B. depressa occurred first between mid- and late July, peaked in late August, and then decreased in mid-September followed by disappearance of the symptoms in late September, during which oviposition activity of B. depressa is considered active. In full-ripened pumpkin producing farms, damaged fruits abruptly increased from early Auguest, because the decay of pumpkins caused by larval development began from that time. B. depressa produced a mean oviposition puncture of 2.2 per fruit and total 28.8-29.8 eggs per fruit. Adult emergence from overwintering pupae, which was monitored using a ground emergence trap, was first observed between mid- and late May, and peaked during late May to early June. The development times from overwintering pupae to adult emergence decreased with increasing temperature: 59.0 days at $15^{\circ}C$, 39.3 days at $20^{\circ}C$, 25.8 days at$25^{\circ}C$ and 21.4 days at $30^{\circ}C$. The pupae did not develop to adult at $35^{\circ}C$. The lower developmental threshold temperature was calculated as $6.8^{\circ}C$ by linear regression. The thermal constant was 482.3 degree-days. The non-linear model of Gaussian equation well explained the relationship between the development rate and temperature. The Weibull function provided a good fit for the distribution of development times of overwintering pupae. The predicted date of 50% adult emergence by a degree-day model showed one day deviation from the observed actual date. Also, the output estimated by rate summation model, which was consisted of the developmental model and the Weibull function, well pursued the actual pattern of cumulative frequency curve of B. depressa adult emergence. Consequently, it is expected that the present results could be used to establish the management strategy of B. depressa.

Growth and Water Use Efficiency of Major Tree Species for Rehabilitation and the Impacts of Planting Trees on Microclimate Condition in Central Dry Zone of Myanmar (미얀마 건조지에서 주요 조림 수종의 생장과 수분이용효율 특성 및 조림이 건조지의 미세기상변화에 미치는 영향)

  • Park, Go Eun;Kim, Chan Beom;An, Jiae;Thang, Tluang Hmung;Maung, Wai Phyoe;Wai, Khaing Hsu;Kwon, Jino;Park, Chanwoo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.327-336
    • /
    • 2016
  • The Bagan, the central part of Myanmar, is dry zone where the mean annual precipitation is less than 600 mm for the last ten years. Forest in this region has been degraded due to biotic and abiotic disturbances. While there have been various efforts to rehabilitate the degraded area, the information on growth and physiological characteristics of planting species and the impacts of planting trees in the region still lacks. Therefore, this study was conducted to determine the growth and physiological water use efficiency characteristics of five species (Azadirachta indica A. Juss., Acacia catechu Willd., Eucalyptus camaldulensis Dehn., Acacia leucophloea (Roxb.) Willd. and Albizia lebbek (L.) Willd.) which are utilized as rehabilitation species in the dry zone and to identify the impacts of tree planting on microclimate change in dry zone. The growth and the foliar carbon isotope composition of seedlings and the above mentioned five species planted in 2005 were measured. And from February 2015 to January 2016, microclimatic factors air temperature and relative humidity at 60 cm and 2 m above soil, soil temperature, soil water contents and precipitation were measured at every 30-minute interval from the two weather stations installed in the plantation located in Ngalinpoke Mt. Range. One was established in the center of A. indica plantation, and the other was in the barren land fully exposed to the sunlight. Among the five species, A. indica and A. lebbek which showed higher water use efficiency could be recommended as rehabilitation species in dry zone. Planting trees in the dry area was shown to affect the change of microclimate with shading effects, declining temperature of the land surface and aridity of the air, and to contribute to conserving more water in soil by preventing direct evaporation and containing more water with fine roots of trees.

Evaluation of MODIS-derived Evapotranspiration at the Flux Tower Sites in East Asia (동아시아 지역의 플럭스 타워 관측지에 대한 MODIS 위성영상 기반의 증발산 평가)

  • Jeong, Seung-Taek;Jang, Keun-Chang;Kang, Sin-Kyu;Kim, Joon;Kondo, Hiroaki;Gamo, Minoru;Asanuma, Jun;Saigusa, Nobuko;Wang, Shaoqiang;Han, Shijie
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.174-184
    • /
    • 2009
  • Evapotranspiration (ET) is one of the major hydrologic processes in terrestrial ecosystems. A reliable estimation of spatially representavtive ET is necessary for deriving regional water budget, primary productivity of vegetation, and feedbacks of land surface to regional climate. Moderate resolution imaging spectroradiometer (MODIS) provides an opportunity to monitor ET for wide area at daily time scale. In this study, we applied a MODIS-based ET algorithm and tested its reliability for nine flux tower sites in East Asia. This is a stand-alone MODIS algorithm based on the Penman-Monteith equation and uses input data derived from MODIS. Instantaneous ET was estimated and scaled up to daily ET. For six flux sites, the MODIS-derived instantaneous ET showed a good agreement with the measured data ($r^2=0.38$ to 0.73, ME = -44 to $+31W\;m^{-2}$, RMSE =48 to $111W\;m^{-2}$). However, for the other three sites, a poor agreement was observed. The predictability of MODIS ET was improved when the up-scaled daily ET was used ($r^2\;=\;0.48$ to 0.89, ME = -0.7 to $-0.6\;mm\;day^{-1}$, $RMSE=\;0.5{\sim}1.1\;mm\;day^{-1}$). Errors in the canopy conductance were identified as a primary factor of uncertainty in MODIS-derived ET and hence, a more reliable estimation of canopy conductance is necessary to increase the accuracy of MODIS ET.

An Analysis of the Hail Damages to Korean Forests in 2017 by Meteorology, Species and Topography (2017년 우박에 의한 산림피해의 기상, 수종 및 지형 특성 분석)

  • Lim, Jong-Hwan;Kim, Eunsook;Lee, Bora;Kim, Sunhee;Jang, Keunchang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.4
    • /
    • pp.280-292
    • /
    • 2017
  • Hail is not a frequently occurring weather event, and there are even fewer reports of hail damages to forest stands. Since the 2000s, an increase in hail incidence has been documented in Europe and the United States. In Korea, severe hails occurred in Jeollanam-do province on May 31 and in Gyeongsangbuk-do province on June 1, 2017. Hail size was ranged from 0.5 to 5.0 cm in diameter in Jeollanam-do, and from 1.5 to 3.0 cm in Gyeongsangbuk-do. This study was aimed to analyze the hail damages to forests by species and topography based on damage-categorized maps created by using drones and aerial photographs, and to analyze relationships of the damages with meteorological factors. The total damaged forest area was 1,163.1ha in Jeollanam-do, and 2,942.3ha in Gyeongsangbuk-do. Among the 'severe' damaged area 326.7ha, 91% was distributed in Jeollanam-do, and concentrated in the city of Hwasun which covers 57.2% of the total 'severe' damaged area. The most heavily damaged species was Korean red pine(Pinus densiflora S. & Z.) followed by P. rigida. Most broad-leaved trees species including oaks were recovered without any dead trees found. Liliodendron tulipifera was the most severely damaged in terms of the rate of 'severe' degree individuals which are needed to be checked whether they will die or be recovered. Cause of the death of pines was considered as the combination of physical damage caused by the hail and long-lasting drought with high air temperature that occurred before and after the hail event. No pathogens and insects were found which might have affected to tree deaths. We suggested a dieback mechanism of the pine trees damaged by hail and drought.

Seasonal Variations of Nitrifying Bacteria in Agricultural Reservoir (농업용 저수지에서의 질화세균의 계절적인 변화)

  • Lee, Hee-Soon;Lee, Young-Ok
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.3 s.99
    • /
    • pp.152-159
    • /
    • 2002
  • The seasonal variations of nitrifying bacterial population sampled from 3 sites in Moon-Chon reservoir were analyzed by in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotide probes from August 2000 until July 2001. In addition, physico-chemical parameters such as temperature, pH, chi-a and DOC were measured to determine correlations between those factors and the size of nitrifying bacterial populations. Total bacterial numbers varied in the range of $0.8{\sim}1.5{\times}10^6\;cells/ml$ independent of sites and had the maximal values in March at all 3 stations. The ratio of eubacteria to total bacteria ranged from 44.9% to 79.5%, and the ratio of each nitrifying bacteria to eubacterial numbers reached only $1.0{\sim}7.4%$. The variations of ammonia-oxidizing bacteria ranged from $1.1{\times}10^4$ to $3.0{\times}10^4\;cells/ml$ without noticeable peak values whereas those of nitrite-oxidizing bacteria varied in $1.3{\sim}5.7{\times}10^4\;cells/ml$ with the increasing tendency in winter regardless of the sites. Moreover it was observed that the numbers of nitrite-oxidizing bacteria were higher than those of ammonia-oxidizing bacteria. Total bacterial numbers correlated with water temperature (r = 0.355, p<0.05) and DOC (r = 0.58G, p<0.01) positively whereas nitrite-oxidizing bacteria correlated with temperature (r = -0.416, p<0.05) and pH (r = -0.568, p = 0.001) negatively. In addition, DOC represented good correlations with eubacterial numbers (r = 0.448, p<0.01). These results indicate that temperature, DOC and pH might be one of the main factors affecting variations of bacterial populations in the aquatic ecosystem. It was also suggested that FISH method is a useful tool for detection of slow growing nitrifying bacteria.

Classification, Analysis on Attributes and Sustainable Management Plan of Biotop Established in Pohang City (포항시 비오톱의 유형 구분, 속성 분석 및 복원 방안)

  • Jung, Song Hie;Kim, Dong Uk;Lim, Bong Soon;Kim, A Reum;Seol, Jaewon;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.245-265
    • /
    • 2019
  • Biotope, which represents the characteristic habitats of living organisms, need to be identified as essential for the efficient creation and sustainable management of urban ecosystems. This study was carried out to provide the basic information for ecological urban planning by analyzing types and attributes of the biotop established throughout the whole area of the Pohang city, a representative industrial city in Korea. The biotop established in Pohang city is composed of 12 types including forests (coniferous, deciduous, and mixed forests), agricultural fields (rice paddy and upland field), green facilities, river, reservoir, bare ground, residential area, public facilities, commercial area, industrial area, roads, and schools. As a result of analyzing the properties according to biotop types, industrial, commercial and residential areas, which represent urban areas, was dominated by introduced vegetation. Moreover the introduced vegetation is usually composed of exotic plants or modified forms for landscape architecture and horticulture rather than native plants, which reflects ecological property of both region and site. As the distance from the urban center increases, the agricultural field showed a form of typical farmland, whereas the closer it is, the more form of greenhouse farming. Natural green spaces were divided into riparian vegetation established along the stream and forest vegetation. Forest vegetation is consisted of secondary forests (seven communities) and plantations (three communities). The urban landscape of Pohang city is dominated by the industrial area. Among them, the steel industry, which occurs large amounts of heat pollution and carbon dioxide, occupies a large proportion. On the other hand, green space is very insufficient in quantity and inferior in quality. This study proposed several restoration plans and further, a green network, which ties the existing green spaces and the green space to be restored as a strategy to improve the environmental quality in this area.

Vertical Profiles of CO2 Concentrations and CO2 Storage in Temperate Forest in Korea (한국 활엽수림의 이산화탄소 농도의 연직구조와 저류항)

  • Thakuri, Bindu Malla;Kang, Minseok;Chun, Jung Hwa;Kim, Joon
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2013.11a
    • /
    • pp.23-24
    • /
    • 2013
  • Micrometeorological fluxes measured over a tall forest in a complex terrain are difficult to interpret. $CO_2$ storage often makes significant contributions to net ecosystem exchange of $CO_2$ (NEE) in early morning and during nighttime due to calm and stable conditions. We measured the above-canopy $CO_2$ flux along with its concentration profiles at eight levels within and above the canopy to evaluate $CO_2$ storage term. Our question is whether or not the $CO_2$ storage term can be estimated accurately from a single level measurement of $CO_2$ concentration in a complex terrain. Our objectives are (1) to document vertical profiles of $CO_2$ concentration and (2) to compare the diurnal and seasonal variations of $CO_2$ storages estimated from single and multi-level $CO_2$ concentration data. Seasonally averaged Diurnal variations of $CO_2$ concentration ranged from 398 to 455 ppm near the forest floor at 0.1 m whereas they ranged from 364 to 395 ppm at 40 m in the atmosphere. The diurnal variation of vertical profiles of $CO_2$ concentration shows very interesting features with season. At all eight levels, diurnal variation of $CO_2$ concentration showed little change in winter. In spring, the diurnal variations of $CO_2$ concentration at 8 levels showed three distinct groups of layers with height: the first layer: 0.1m (near surface), second layer: 1.0 m and 4.0m (below canopy) and the third layer: 7.4m to 40.7 m (near canopy and above). In summer, these three groups of layers were further separated with larger variations whereas such distinction became smaller in fall. The diurnal variation of $CO_2$ concentration in the first three layers near surface always showed higher concentration with larger variability. Typically, $CO_2$ concentration showed peaks in early morning and in the evening. After the evening peak, $CO_2$ concentration gradually increased except for those near the surface (i.e., 0.1, 1.0 and 4.0 m) where the concentrations actually decreased. We suspect that this could be attributed to the drainage flow of $CO_2$ along the hill slope from the headwater to downstream, which is not taken into account for net ecosystem $CO_2$ exchange. In comparison to the results of other studies, the distinct and different vertical structures of $CO_2$ concentrations observed at our site may be due to complex terrain and weak turbulent mixing under calm conditions at the site. The annual mean of diurnal variation of $CO_2$ storage flux from single level ranged from -0.6 to $0.9{\mu}mol\;m^{-2}s^{-1}$ and from multi-level from -1.2 to $1.0{\mu}\;{\mu}mol\;m^{-2}s^{-1}$. When compared against the results from the multi-level concentrations, the storage flux estimated from a single-level concentration was generally adequate except for specific hours near sunrise and sunset. Further details and their implication will be discussed in the presentation.

  • PDF

Prediction of Distribution Changes of Carpinus laxiflora and C. tschonoskii Based on Climate Change Scenarios Using MaxEnt Model (MaxEnt 모델링을 이용한 기후변화 시나리오에 따른 서어나무 (Carpinus laxiflora)와 개서어나무 (C. tschonoskii)의 분포변화 예측)

  • Lee, Min-Ki;Chun, Jung-Hwa;Lee, Chang-Bae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.55-67
    • /
    • 2021
  • Hornbeams (Carpinus spp.), which are widely distributed in South Korea, are recognized as one of the most abundant species at climax stage in the temperate forests. Although the distribution and vegetation structure of the C. laxiflora community have been reported, little ecological information of C. tschonoskii is available. Little effort was made to examine the distribution shift of these species under the future climate conditions. This study was conducted to predict potential shifts in the distribution of C. laxiflora and C. tschonoskii in 2050s and 2090s under the two sets of climate change scenarios, RCP4.5 and RCP8.5. The MaxEnt model was used to predict the spatial distribution of two species using the occurrence data derived from the 6th National Forest Inventory data as well as climate and topography data. It was found that the main factors for the distribution of C. laxiflora were elevation, temperature seasonality, and mean annual precipitation. The distribution of C. tschonoskii, was influenced by temperature seasonality, mean annual precipitation, and mean diurnal rang. It was projected that the total habitat area of the C. laxiflora could increase by 1.05% and 1.11% under RCP 4.5 and RCP 8.5 scenarios, respectively. It was also predicted that the distributional area of C. tschonoskii could expand under the future climate conditions. These results highlighted that the climate change would have considerable impact on the spatial distribution of C. laxiflora and C. tschonoskii. These also suggested that ecological information derived from climate change impact assessment study can be used to develop proper forest management practices in response to climate change.

Purification Characteristics and Hydraulic Conditions in an Artificial Wetland System (인공습지시스템에서 수리학적 조건과 수질정화특성)

  • Park, Byeng-Hyen;Kim, Jae-Ok;Lee, Kwng-Sik;Joo, Gea-Jae;Lee, Sang-Joon;Nam, Gui-Sook
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.4 s.100
    • /
    • pp.285-294
    • /
    • 2002
  • The purpose of this study was to evaluate the relationships between purification characteristics and hydraulic conditions, and to clarify the basic and essential factors required to be considered in the construction and management of artificial wetland system for the improvement of reservoir water quality. The artificial wetland system was composed of a pumping station and six sequential plants beds with five species of macrophytes: Oenanthe javanica, Acorus calamus, Zizania latifolia, Typha angustifolia, and Phragmites australis. The system was operated on free surface-flow system, and operation conditions were $3,444-4,156\; m^3/d$ of inflow rate, 0.5-2.0 hr of HRT, 0.1-0.2 m of water depth, 6.0-9.4 m/d of hydraulic loading, and relatively low nutrients concentration (0.224-2.462 mgN/L, 0.145-0.164 mgP/L) of inflow water. The mean purification efficiencies of TN ranged from 12.1% to 14.3% by showing the highest efficiency at the Phragmites australis bed, and these of TP were 6.3-9.5% by showing the similar ranges of efficiencies among all species. The mean purification efficiencies of SS and Chl-A ranged from 17.4% to 38.5% and from 12.0% to 20.2%, respectively, and the Oenanthe javanica bed showed the highest efficiency with higher concentration of influent than others. The mean purification amount per day of each pollutant were $9.8-4.1\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in BOD, $1.299-2.343\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in TN, $0.085-1.821\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in TP, $17.9-111.6\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in SS and $0.011-0.094\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in Chl-a. The purification amount per day of TN revealed the hi링hest level at the Zizania latifolia bed, and TP showed at the Acrous calamus bed. SS and Chl-a, as particulate materials, revealed the highest purification amount per day at the Oenanthe javanica bed that was high on the whole parameters. It was estimated that the purification amount per day was increased with the high concentration of influent and shoot density of macrophytes, as was shown in the purification efficiency. Correlation coefficients between purification efficiencies and hydraulic conditions (HRT and inflow rate) were 0.016-0.731 of $R^2$ in terms of HRT, and 0.015-0.868 of $R^2$ daily inflow rate. Correlation coefficients of purification amounts per day with hydraulic conditions were 0.173-0.763 of Ra in terms of HRT, and 0.209-0.770 daily inflow rate. Among the correlation coefficients between purification efficiency and hydraulic condition, the percentages of over 0.5 range of $R^2$ were 20% in HRT and in daily inflow rate. However, the percentages of over 0.5 range of correlation coefficients ($R^2$) between purification amount per day and hydraulic conditions were 53% in HRT and 73% in daily inflow rate. The relationships between purificationamount per day and hydraulic condition were more significant than those of purifi-cation efficiency. In this study, high hydraulic conditions (HRT and inflow rate) are not likely to affect significantly the purification efficiency of nutrient. Therefore, the emphasis should be on the purification amounts per day with high hydraulicloadings (HRT and inflow rate) for the improvement of eutrophic reservoir withrelatively low nutrients concentration and large quantity to be treated.

Analysis of Indicator Microorganism Concentration in the Rice Cultural Plot after Reclaimed Water Irrigation (하수처리수 관개후 벼재배 시험구에서 지표미생물 거동 분석)

  • Jung, Kwang-Wook;Jeon, Ji-Hong;Ham, Jong-Hwa;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.112-121
    • /
    • 2004
  • A study was performed to examine the effects of UV-disinfected reclaimed water on microorganism concentration during rice culture. Four treatments were used and each one was triplicated to evaluate the changes of microorganism concentrations: stream water irrigation (STR), biofilter effluent irrigation (BE), UV-disinfected water irrigation with dose of 6 mW ${\cdot}$ s $cm{-2}$ (UV-6), and UV-disinfected water irrigation with dose of 16 mW ${\cdot}$ s $cm{-2}$ (UV-16). The indicator microorganisms of interest were total coliform (TC), fecal coliform (FC), and E. coli. The biofilter effluent from 16-unit apartment sewage treatment plant was used as reclaimed water and flowthrough type UV-disinfection system was used. Concentrations of indicator microorganisms in the treatment plots ranged from $10^2$ to $10^5$ MPN/100 mL during 24 hours after irrigation in May and June, where initial irrigation water for transplanting reparation was biofilter-effluent without UV-disinfection. It implies that initial irrigation using only non-disinfected reclaimed water for puddling in paddy field can be health-concerned because of more chance of farmer's physical contact with elevated concentration of microorganisms. The concentrations of microorganisms varied widely with rainfall, and treatments using UV-disinfected water irrigation showed significantly lower concentrations than others and their levels were within the range of paddy rice field with normal surface water irrigation. The mean concentrations of STR and BE during growing season were in the range of 4 ${\times}\;10^3$ MPN/100 mL for TC, and 2${\times}\;10^3$ MPN/100 mL for FC and E, Coli, While mean concentrations of UV-S and UV-lS were less than 1${\times}\;10^3$ MPN/100 mL for all the indicator microorganisms. Overall, UV-disinfection was thought to be feasible and practical alternative for agricultural reuse of secondary level effluent in Korea.