DOI QR코드

DOI QR Code

An Analysis of the Hail Damages to Korean Forests in 2017 by Meteorology, Species and Topography

2017년 우박에 의한 산림피해의 기상, 수종 및 지형 특성 분석

  • Lim, Jong-Hwan (Center for Forest & Climate Change, National Institute of Forest Science) ;
  • Kim, Eunsook (Center for Forest & Climate Change, National Institute of Forest Science) ;
  • Lee, Bora (Center for Forest & Climate Change, National Institute of Forest Science) ;
  • Kim, Sunhee (Division of Forest Ecology Research, National Institute of Forest Science) ;
  • Jang, Keunchang (Center for Forest & Climate Change, National Institute of Forest Science)
  • 임종환 (국립산림과학원 기후변화연구센터) ;
  • 김은숙 (국립산림과학원 기후변화연구센터) ;
  • 이보라 (국립산림과학원 기후변화연구센터) ;
  • 김선희 (국립산림과학원 산림생태연구과) ;
  • 장근창 (국립산림과학원 기후변화연구센터)
  • Received : 2017.10.25
  • Accepted : 2017.12.15
  • Published : 2017.12.30

Abstract

Hail is not a frequently occurring weather event, and there are even fewer reports of hail damages to forest stands. Since the 2000s, an increase in hail incidence has been documented in Europe and the United States. In Korea, severe hails occurred in Jeollanam-do province on May 31 and in Gyeongsangbuk-do province on June 1, 2017. Hail size was ranged from 0.5 to 5.0 cm in diameter in Jeollanam-do, and from 1.5 to 3.0 cm in Gyeongsangbuk-do. This study was aimed to analyze the hail damages to forests by species and topography based on damage-categorized maps created by using drones and aerial photographs, and to analyze relationships of the damages with meteorological factors. The total damaged forest area was 1,163.1ha in Jeollanam-do, and 2,942.3ha in Gyeongsangbuk-do. Among the 'severe' damaged area 326.7ha, 91% was distributed in Jeollanam-do, and concentrated in the city of Hwasun which covers 57.2% of the total 'severe' damaged area. The most heavily damaged species was Korean red pine(Pinus densiflora S. & Z.) followed by P. rigida. Most broad-leaved trees species including oaks were recovered without any dead trees found. Liliodendron tulipifera was the most severely damaged in terms of the rate of 'severe' degree individuals which are needed to be checked whether they will die or be recovered. Cause of the death of pines was considered as the combination of physical damage caused by the hail and long-lasting drought with high air temperature that occurred before and after the hail event. No pathogens and insects were found which might have affected to tree deaths. We suggested a dieback mechanism of the pine trees damaged by hail and drought.

우박은 흔하지 않은 기상현상이며 산림의 피해에 대한 보고는 더욱 드물다. 우리나라도 2014년 충북 음성군에서 14.1ha의 피해 이외에는 공식적 보고가 거의 없었다. 그러나 유럽과 미국의 자료에 의하면 2000년대 들어 우박의 발생빈도가 증가하고 있으며, 미국과 호주, 우리나라 충북의 경우 산림에서 우박에 의해 가장 심하게 피해를 받는 수종은 소나무류이었고, 우박에 의한 물리적 피해 이후 2차적으로 병이나 가뭄이 겹치면 그 피해가 커지는 것으로 알려지고 있다. 2017년 5월 31일 전남 일대에서 0.5~5.0cm(최대 10.0cm), 6월 1일 경북 봉화에서 1.5~3.0cm(최대 5.0cm) 크기의 우박이 내려 농작물은 물론 숲에 많은 피해를 입혔다. 이에 본 연구에서는 우박으로 인한 산림 피해지에 대해 드론 및 항공사진 자료를 활용하여 피해 등급별로 도면화하여 피해 수종과 피해 규모를 파악하고 지형적 특성, 기상요인 등과의 연관성 등을 분석하였다. 전체 산림 피해면적은 4,105.2ha이었고, 전남은 화순, 담양, 곡성 등 3개 군에서 1,163.1ha, 경북은 봉화에서 2,942.3ha이었다. 그러나 피해강도로 보았을 때 피해 "심" 지역 전체 326.7ha의 91%가 전남에 분포하였고 이 중 57%인 185.2ha가 화순에 집중되었다. 피해가 가장 심한 수종은 소나무이었고 다음으로는 리기다소나무이었으며, 활엽수는 백합나무의 피해율이 높았으나 고사여부에 대한 모니터링이 필요하고 졸참나무, 서어나무 등의 활엽수들은 대부분 회복되었다. 피해지의 지형 특성을 살펴보면 전남은 주로 남사면과 서사면에, 경북은 주로 북-북서면에 피해가 컸는데 이는 우박이 내릴 당시의 풍향과 관계된다. 우박피해 이후 소나무류의 고사 원인은 우박에 의한 물리적 피해와 우박이 내린 시기 전후 지속된 고온과 가뭄이 함께 작용한 것으로 판단된다. 나무 고사에 영향을 미쳤을 것으로 판단되는 병이나 해충은 발견되지 않았다. 우박과 가뭄에 의해 피해를 입은 소나무가 고사한 메커니즘을 제시하였다.

Keywords

References

  1. Changnon, S. A., D. Changnon, E. R. Fosse, D. C. Hoganson, J. R. Richard, and J. M. Totsch, 1997: Effects of recent weather extremes on the insurance industry: major implications for the atmospheric sciences, Bulletin of the American Meteorological Society 78, 425-435. https://doi.org/10.1175/1520-0477(1997)078<0425:EORWEO>2.0.CO;2
  2. Community Collaborative Rain, Hail & Snow Network. Hail reports (2000-2016). Retrieved from http://www.cocorahs.org (accessed on July 2017)
  3. Cremer, K. W., 1984: Hail damage in Australian pine plantations I. Nature and extent of damage. Australian Forestry 47, 103-114. https://doi.org/10.1080/00049158.1984.10675986
  4. Dobbs, R. C., and R. G. McMinn, 1973: Hail damage to a new white spruce and lodgepole pine plantation in central British Columbia. The Forestry Chronicle 49, 174-175. https://doi.org/10.5558/tfc49174-4
  5. Dotzek, N., P. Groenemeijer, B. Feuerstein, and A. M. Holzer, 2009: Overview of ESSL's severe convective storms research using the European Severe Weather Database ESWD. Atmospheric Research 93, 575-586. https://doi.org/10.1016/j.atmosres.2008.10.020
  6. Go, H., S. Jeong, and K. Kim, 2007: Temporal and spatial structure of hail in Korea (2000-2006). Proceedings of 2007 Fall Meeting of the Korean Meteorological Society, 152-153. (in Korean)
  7. Guttman, N. B., 1998: Comparing the Parmer drought severity index and the standardized precipitation index. Journal of the American Water Resources Association 34, 113-121. doi: 10.1111/j.1752-1688.1998.tb05964.x.
  8. Hayes, M. J., M. Svoboda, D. A. Wilhite, and O. Vanyarkho, 1999: Monitoring the 1996 drought using the standardized precipitation index. Bulletin of the American Meteorological Society 80, 429-438. https://doi.org/10.1175/1520-0477(1999)080<0429:MTDUTS>2.0.CO;2
  9. IPCC (Intergovernmental Panel on Climate Change), 2014: Climate Change 2014: Impacts, Adaptation and Vulnerability. Available from URL: http://www.ipcc.ch/report/ar5/wg2/ (accessed on Jul. 2017)
  10. Jin, H., H. Lee, L. Jambajamts, and J. Back, 2016: The hail climate of Korea, Proceedings of Fall Meeting of the Korean Meteorological Society, 24-25. (in Korean)
  11. Kang, S., J.-H, Lim, E. Kim, and N. Jo, 2016: Modeling analysis of climate and soil depth effects on Pine tree dieback in Korea using BIOME-BGC. Korean Journal of Agricultural and Forest Meteorology 18, 242-252. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2016.18.4.242
  12. Kim, D., E. Lim, and W. Kwon, 1999: Temporal and spatial structure of hail occurrence in Korea. Proceedings of 1999 Spring Conference, of the Korean Meteorological Society, 259-262. (in Korean)
  13. Kim, J., E. Kim, and J.-H. Lim, 2017: Topographic and meteorological characteristics of Pinus densiflora dieback areas in Sogwang-ri, Uljin. Korean Journal of Agricultural and Forest Meteorology 19, 10-18. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2017.19.1.10
  14. Lee, C., J. Lee, and C. Ryu, 2011: Classification of 500 hPa weather charts and analysis of hail incidence areas, Proceedings of 2011 Fall Meeting of the Korean Meteorological Society, 30-31. (in Korean)
  15. Lee, C., K. Park, and Y. Sin, 2005: Analysis of hail characteristics in Korea. Proceedings of 2005 Fall meeting of the Korean Meteorological Society, 342-343. (in Korean)
  16. Lee, J. B., E. S. Kim, and S. H. Lee, 2014: An analysis of spectral pattern for detecting pine wilt disease using ground-based hyperspectral camera. Korean Journal of Remote Sensing 30, 665-675. https://doi.org/10.7780/kjrs.2014.30.5.11
  17. Lee, S. K., S. K. Lee, H. B. Bae, S. T. Seo, and J. K. Lee, 2014: Effects of water stress on the endophytic fungal communities of Pinus koraiensis needles infected by Cenangium ferruginosum. Mycobiology 42, 331-338. https://doi.org/10.5941/MYCO.2014.42.4.331
  18. Lim, J.-H., 2015: Status and hypothesis of dieback of pines due to climate change in Korea. Proceedings of 2015 Second Half Conference of the Korean Society of Climate Change Research, in Gwangju, 85pp. (in Korean)
  19. Lim, J.-H., 2016: Climate change-induced dieback of evergreen conifers in Korea and options for adaptation. Proceedings of 2016 International Climate Change Adaptation Symposium on Forest Management for Enhancing Resilience to Climate Change, Seoul, Korea, 53-76.
  20. Magee, A. 2016: Pine trees to be replanted at Kowen. Australian Capital Territory Media Releases. Retrieved from http://www.act.gov.au (accessed on July 2017)
  21. McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration of time scales. 8th Conference on Alpplied Climatology, Anaheim, CA, January, 17-22.
  22. McKee, T. B., N. J. Doesken, and J. Kleist, 1995: Drought monitoring with multiple time scales. 9th AMS Conference on Applied Climatology, Dallas, TX, January, 15-20.
  23. NOAA (National Oceanic and Atmospheric Administration): Severe weather 101 (hail). Retrieved from http://www.nssl.noaa.gov/education/svrwx101/hail/(accessed on July 2017)
  24. Reily, C. G., 1953: Hail damage in forest stands. The Forestry Chronicle 29, 139-143. https://doi.org/10.5558/tfc29139-2
  25. Smith, S., M. J. Wingfied and T. A. Coutinho, 2002: The role of latent Sphaeropsis sapinea infections in post-hail associated die-back of Pinus patula. Forest Ecology and Management 164, 177-184. https://doi.org/10.1016/S0378-1127(01)00610-7
  26. Tartachnyk, I., and M. M. Blanke, 2002: Effect of mechanically-simulated hail on photosynthesis, dark respiration and transpiration of apple leaves. Environmental and Experimental Botany 48, 169-175. https://doi.org/10.1016/S0098-8472(02)00022-9
  27. Williams, L., 2017. Wind and hail damage caused by the April 9, 2017 storm. Posted on April 25 in Wisconsin DNR Forestry News. Retrieved from https://forestrynews.blogs.govdelivery.com/ (accessed on July 2017).
  28. Zwolinski, J. B., W. J. Swart and M. J. Wingfield, 1995: Association of Sphaeropsis sapines with insect infestation following hail damage of Pinus radiata. Forest Ecology and Management 72, 293-298. https://doi.org/10.1016/0378-1127(94)03459-A