• Title/Summary/Keyword: Agricultural Environment

Search Result 5,384, Processing Time 0.034 seconds

Efficient Method for the Rapid Purification of Nosema ceranae Spores

  • Kim, Dong-Jun;Yun, Hwi-Geon;Kim, In-Hui;Gwak, Won-Seok;Woo, Soo-Dong
    • Mycobiology
    • /
    • v.45 no.3
    • /
    • pp.204-208
    • /
    • 2017
  • Nosema ceranae is an obligate intracellular fungal parasite that causes mortality in honey bees and enhances the susceptibility of honey bees to other pathogens. Efficient purification of Nosema spores from the midgut of infected honey bees is very important because Nosema is non-culturable and only seasonably available. To achieve a higher yield of spores from honey bees, in this study, we considered that the initial release of spores from the midgut tissues was the most critical step. The use of 2 mm beads along with enzymatic treatment with collagenase and trypsin enhanced the homogenization of tissues and the yield of released spores by approximately 2.95 times compared with the use of common 3 mm beads alone. The optimal time for the enzyme treatment was determined to be 1 hr as measured by the yield and viability of the spores. A one-step filtration using a filter paper with an $8-11{\mu}m$ pore size was sufficient for removing cell debris. This method may be useful to purify not only N. ceranae spores but also other Nosema spp. spores.

Distribution Characteristics of Pesticide Residues in the Portions of Lettuce Leaves (상추 잎의 부위별 잔류농약 분포 특성)

  • Kwon, Sun-Mok;Choi, Ok-Kyung;Kim, Ki-Cheol;Kim, Jung-Beom;Kang, Heung-Gyu;Cho, Yun-Sik;Ha, Jin-Ok;Jang, Jin-Ho;Lee, Byoung-Hun;Lee, Sung-Nam;Lee, Sun-Young;Kang, Suk-Ho;Lee, Jong-Bok
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.2
    • /
    • pp.53-60
    • /
    • 2014
  • This study was conducted to investigate the changes of the residual amount in the leafstalk (end) and the fore-end (upper) portion of lettuce leaves during cultivation period to 14 days, 12 times in total (0, 1, 2, 3, 4, 5, 7, 8, 10, 12, 13 and 14 days) after spraying with boscalid and lufenuron. In the case of boscalid, the initial concentrations at 3 hours (0 day) of the leafstalk and the fore-end portion of lettuce leaves were 18.26 mg/kg and 84.97 mg/kg, respectively and the residual amounts were rapidly decreased to 0.31 mg/kg and 0.37 mg/kg at 14 days after chemical application. In the case of lufenuron, the initial concentrations at 3 hours (0 day) of the leafstalk and the fore-end portion of lettuce leaves were 0.91 mg/kg and 5.21 mg/kg, respectively and the residual amounts were rapidly decreased to 0.06 mg/kg and 0.09 mg/kg at 13 days after chemical application. The variations of the residual concentrations analyzing 12 times after spraying showed that the residual amounts of the leafstalk portion of lettuce leaves were less than its fore-end portion in boscalid and lufenuron. In additon, 9 kinds of pesticide including boscalid in 16 lettuce leaf (found to contain pesticide in 2013) showed that the residual amounts of the leafstalk portion of lettuce leaves were less than its fore-end portion as well.

Predicting Soil Chemical Properties with Regression Rules from Visible-near Infrared Reflectance Spectroscopy

  • Hong, Suk Young;Lee, Kyungdo;Minasny, Budiman;Kim, Yihyun;Hyun, Byung Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.319-323
    • /
    • 2014
  • This study investigates the prediction of soil chemical properties (organic matter (OM), pH, Ca, Mg, K, Na, total acidity, cation exchange capacity (CEC)) on 688 Korean soil samples using the visible-near infrared reflectance (VIS-NIR) spectroscopy. Reflectance from the visible to near-infrared spectrum (350 to 2500 nm) was acquired using the ASD Field Spec Pro. A total of 688 soil samples from 168 soil profiles were collected from 2009 to 2011. The spectra were resampled to 10 nm spacing and converted to the 1st derivative of absorbance (log (1/R)), which was used for predicting soil chemical properties. Principal components analysis (PCA), partial least squares regression (PLSR) and regression rules model (Cubist) were applied to predict soil chemical properties. The regression rules model (Cubist) showed the best results among these, with lower error on the calibration data. For quantitatively determining OM, total acidity, CEC, a VIS-NIR spectroscopy could be used as a routine method if the estimation quality is more improved.

A System Dynamics Analysis on Use Diffusion of Rice Wet Direct Seeding Technology - Focused on a Case of Pilot Village - (벼 무논직파재배기술 사용확산의 시스템 다이내믹스 동태분석 -시범단지 사례를 중심으로-)

  • Kim, Seongsup;Jeong, U Seok;Ha, Jihee;Seo, Sangtaek
    • Journal of Agricultural Extension & Community Development
    • /
    • v.24 no.2
    • /
    • pp.99-115
    • /
    • 2017
  • The purpose of this study is to analyze potential adoption rates and reusing patterns of the new rice direct seeding technology. The model constructed and employed in this study is a system dynamics model of farmer adoption and reusing patterns for this new technology over time. The model incorporates a causal loop diagram that explains interactions among rice cultivation subsystems with feedback loops and further attempts to build a causal loop model with stock-flow diagram for computer simulation. As one example of how the model can be used to provide insight to rice farmers, simulations are run over varying levels on the cultivation process of rice. The major finding is to demonstrate the utility of system dynamics simulation methodology in aiding the rice wet direct seeding farmers' decision making.

An Analysis of The Relative Importance for Target Selecting Criteria in Agricultural Environment Conservation Program (농업환경보전 프로그램 사업대상지 선정기준의 상대적 중요도 분석)

  • Kim, Hyeon-Woong;Sung, Jae-Hoon
    • Korean Journal of Organic Agriculture
    • /
    • v.30 no.4
    • /
    • pp.485-497
    • /
    • 2022
  • Agricultural environmental policies to reduce negative externalities and expand positive externalities became common around the world. However, literature regarding the efficient and effective implementation of agricultural environmental policies, such as optional direct payment, is limited. This study, thus, analyzes the relative importance for target selecting-criteria in order to enhance the cost-effectiveness of the Agricultural Environment Conservation Program in Korea. In this context, we conducted survey to 15 experts who are related in agricultural environment policies and analyzed survey results based on ANP method which can consider correlation between selecting criteria. The results show that, in the case field, "soil", "water", and "ecology" field have relative high importance than the other fields. Also, the relative importance for 'improving rural landscape', 'giving nutrient input moderately', and 'conserving agricultural heritage' activities is higher than the other activities. Furthermore, the relative importance among fields and activities of ANP is different from those of AHP. This result implies that it is necessary to consider the correlation between selecting criteria in order to design effectively. Finally, we suggest that in order to enhance the effectiveness of the program, it would be appropriate to assign differential points according to the importance of each activity when identifying appropriate farms.

Ditylenchus acris (Thorne, 1941) Fortuner and Maggenti 1987, A New Strawberry Nematode in Korea

  • Kim, Dong-Geun;Kim, Seung-Han;Lee, Joong-Hwan
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.83-85
    • /
    • 2005
  • Ditylenchus acris was isolated from diseased strawberry plants. Frequently, D. acris and Aphelenchoides fragariae occur together in a strawberry plant. Both species appeared very similar in the shape, length, swimming behavior and causing symptoms, and difficult to distinguish them by a stereomicroscope. But they were easily distinguished under a compound microscope especially by their tail shape, median bulb, vulva position, and bursa.

Effects of Alternative Crops Cultivation on Soil Physico-chemical Characteristics and Crop Yield in Paddy Fields (논에서 벼 대체작물 재배가 토양 물리화학성과 작물 수량에 미치는 효과)

  • Han, Kyunghwa;Cho, Hyunjun;Cho, Heerae;Lee, Hyubsung;Ok, Junghun;Seo, Mijin;Jung, Kangho;Zhang, Yongseon;Seo, Youngho
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.2
    • /
    • pp.67-72
    • /
    • 2017
  • BACKGROUND:Cultivation of alternative crops in paddy fields is necessary because of the decrease in rice consumption and the increase in excess stock of rice. The study was conducted to investigate the effects of alternative crops cultivation in paddy fields on soil physico-chemical characteristics and crop yield. METHODS AND RESULTS: Soybean (Glycine max), red-clover (Trifolium pratense), and water convolvulus (Ipomoea aquatica) were selected for alternative crops in the first and/or second year and rice was planted in the third year. When alternative crops were cultivated in the previous year, soil bulk density, soil hardness, and water content were lower than those for rice cultivation. Water-depth decreasing rate and aggregate content were greater for the upland-upland-paddy cropping system than upland-paddy-paddy cropping system. Cultivation of red-clover and water convolvulus for two years resulted in the high soil organic matter content. In the third year, available phosphate, exchangeable potassium, and soil cation exchange capacity were relatively high when soybean was cultivated in the previous year. In the first year, water convolvulus cultivation showed greater productivity than red-clover cultivation while the opposite pattern was found in the second year. Rice yield in the third year was greater for soybean or red-clover as a previous crop than for water convolvulus as a previous crop. CONCLUSION: The results suggest that cultivation of alternative crops in paddy fields can improve soil physical properties including bulk density, hardness, water content, and aggregate content as well as rice productivity.

Early Growth, Pigmentation, Protein Content, and Phenylalanine Ammonia-lyase Activity of Red Curled Lettuces Grown under Different Lighting Conditions

  • Heo, Jeong-Wook;Kang, Dong-Hyeon;Bang, Hea-Son;Hong, Seung-Gil;Chun, Chang-Hoo;Kang, Kee-Kyung
    • Horticultural Science & Technology
    • /
    • v.30 no.1
    • /
    • pp.6-12
    • /
    • 2012
  • Early growth, pigmentation, protein content, and phenylalanine ammonia-lyase (PAL) activity of red curly lettuces (Lactuca sativa L.) grown under different lighting conditions were investigated. Fluorescent lamps (control), blue, red, and blue plus red light-emitting diodes (LEDs) were used as light sources for 10 days. An equal proportion (1:1) of blue and red LEDs was used in the mixed radiation condition. Compared with the control, monochromic red or blue lighting increased fresh and dry weights of 'Ttuksum' and 'Jaju' lettuces. Anthocyanin synthesis was also significantly promoted by the mixed radiation of blue and red LEDs. The mixed radiation also increased the protein content and PAL enzyme activity of 'Ttuksum' leaves by about 200% compared to other treatments. Anthocyanin content was the highest in lettuces subjected to the mixture radiation of blue and red light treatment, while anthocyanin synthesis was inhibited by monochromic red light. The results of the present study indicate that growth and pigment synthesis in lettuces are significantly enhanced by exposure to mixed radiation from blue and red LEDs.

Yield Loss Assessment and Determination of Economic Thresholds Limits against Soybean Anthracnose (콩탄저병의 피해 해석 및 요방제 수준 설정)

  • Moon, Youn-Gi;Lee, Jae-Hong;Choi, Jun-Keun;Kang, An-Seok;Han, Seong-Sook
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.2
    • /
    • pp.133-137
    • /
    • 2010
  • A field investigation was carried out for two years to analyze yield loss due to soybean anthracnose caused by Colletotrichum truncatum and to determine its economic threshold limit. Anthracnose severity in terms of % diseased pods was negatively correlated with yield, number of normal seeds per plant and number of pods per plant, and positively correlated with % abnormal seeds with correlation coefficients of -0.85, -0.78, -0.64, and 0.80, respectively. A simple linear regression model was obtained as Y=-1.7781X+164.22 with $R^2$=0.8092, when the soybean yields (Y) were predicted using anthracnose severity (X) as an independent variable. The yield levels could be predicted as high as 80.92%. Based on this equation, spray threshold without economic considerations was estimated as 6.9 in % pods infected with anthracnose. Economic threshold limit and economic spray threshold able to compensate the costs of fungicide sprays were determined as 11.9% and 9.5%, respectively.

Study on Establishment of the Greenhouse Environment Monitoring System for Crop Growth Monitoring (작물 생식 모니터링을 위한 온실환경 모니터링 시스템 구축연구)

  • Kim, Won-Kyung;Cho, Byeong-Hyo;Hong, Youngki;Choi, Won-Sik;Kim, Kyoung-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.349-356
    • /
    • 2022
  • Currently, the agricultural population in Korea indicates a decreasing and aging orientation. As the population of farm labor continues to decline, so farmers are feeling the pressure to be stable crop production. To solve the problem caused by the decreasing of farm labor, it is necessary to change over to "Digital agriculture". Digital agriculture is tools that digitally collect, store, analyze, and share electronic data and/or information in agriculture, and aims to integrate the several digital technologies into crop and livestock management and other processes in agriculture fields. In addition, digital agriculture can offer the opportunity to increase crop production, save costs for farmer. Therefore, in this study, for data-based Digital Agriculture, a greenhouse environment monitoring system for crop growth monitoring based on Node-RED, which even beginners can use easily, was developed, and the implemented system was verified in a hydroponic greenhouse. Several sensors, such as temperature, humidity, atmospheric pressure, CO2, solar radiation, were used to obtain the environmental data of the greenhouse. And the environmental data were processed and visualized using Node-RED and MariaDB installed in rule.box digital. The environment monitoring system proposed in this study was installed in a hydroponic greenhouse and obtained the environmental data for almost two weeks. As a result, it was confirmed that all environmental data were obtained without data loss from sensors. In addition, the dashboard provides the names of installed sensors, real time environmental data, and changes in the last three days for each environmental data. Therefore, it is considered that farmers will be able to easily monitor the greenhouse environment using the developed system in this study.