• Title/Summary/Keyword: Agitation method and time

Search Result 51, Processing Time 0.033 seconds

Investigating the Au-Cu thick layers Electrodeposition Rate with Pulsed Current by Optimization of the Operation Condition

  • Babaei, Hamid;Khosravi, Morteza;Sovizi, Mohamad Reza;Khorramie, Saeid Abedini
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.172-179
    • /
    • 2020
  • The impact of effective parameters on the electrodeposition rate optimization of Au-Cu alloy at high thicknesses on the silver substrate was investigated in the present study. After ensuring the formation of gold alloy deposits with the desired and standard percentage of gold with the cartage of 18K and other standard karats that should be observed in the manufacturing of the gold and jewelry artifacts, comparing the rate of gold-copper deposition by direct and pulsed current was done. The rate of deposition with pulse current was significantly higher than direct current. In this process, the duty cycle parameter was effectively optimized by the "one factor at a time" method to achieve maximum deposition rate. Particular parameters in this work were direct and pulse current densities, bath temperature, concentration of gold and cyanide ions in electrolyte, pH, agitation and wetting agent additive. Scanning electron microscopy (SEM) and surface chemical analysis system (EDS) were used to study the effect of deposition on the cross-sections of the formed layers. The results revealed that the Au-Cu alloy layer formed with concentrations of 6gr·L-1 Au, 55gr·L-1 Cu, 24 gr·L-1 KCN and 1 ml·L-1 Lauryl dimethyl amine oxide (LDAO) in the 0.6 mA·cm-2 average current density and 30% duty cycle, had 0.841 ㎛·min-1 Which was the highest deposition rate. The use of electrodeposition of pure and alloy gold thick layers as a production method can reduce the use of gold metal in the production of hallow gold artifacts, create sophisticated and unique models, and diversify production by maintaining standard karats, hardness, thickness and mechanical strength. This will not only make the process economical, it will also provide significant added value to the gold artifacts. By pulsating of currents and increasing the duty cycle means reducing the pulse off-time, and if the pulse off-time becomes too short, the electric double layer would not have sufficient growth time, and its thickness decreases. These results show the effect of pulsed current on increasing the electrodeposition rate of Au-Cu alloy confirming the previous studies on the effect of pulsed current on increasing the deposition rate of Au-Cu alloy.

Control of dissolved Oxygen Concentration and Specific Growth Rate in Fed-batch Fermentation (유가식 생물반응기에서의 용존산소농도 및 비성장속도의 제어)

  • Kim, Chang-Gyeom;Lee, Tae-Ho;Lee, Seung-Cheol;Chang, Yong-Keun;Chang, Ho-Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.354-365
    • /
    • 1993
  • A novel control method with automatic tuning of PID controller parameters has been developed for efficient regulation of dissolved oxygen concentration in fed-batch fermentations of Escherichia coli. Agitation speed and oxygen partial pressure in the inlet gas stream were chosen to be the manipulated variables. A heuristic reasoning allowed improved tuning decisions from the supervision of control performance indices and it coule obviate the needs for process assumptions or disturbance patterns. The control input consisted of feedback and feedforword parts. The feedback part was determined by PID control and the feedforward part is determined from the feed rate. The proportional gain was updated on-line by a set of heuristics rules based on the supervision of three performance indices. These indices were output error covariance, the average value of output error, and input covariance, which were calculated on-line using a moving window. The integral and derivative time constants were determined from the period of output response. The specific growth rate was maintained at a low level to avoid acetic acid accumulation and thus to achieve a high cell density. The specific growthe rate was estimated from the carbon dioxide evolution rate. In fed-batch fermentation, the simutaneous control of dissolved oxygen concentration (at 0.2; fraction of saturated value) and specific growth rate (at 0.25$hr^{-1}$) was satisfactory for the entire culture period in spite of the changes in the feed rate and the switching of control input.

  • PDF

A study on the Rapid Processing of Hydrolyzed Anchovy Paste and Its Quality Stability (효소분해법에 의한 페이스트형 속성 멸치젓의 제조 및 품질에 관한 연구)

  • HAN Bong-Ho;KIM Sang-Ho;CHO Hyun-Duk;CHO Man-Gi;BAE Tae-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.1
    • /
    • pp.79-87
    • /
    • 1997
  • A study on the processing method of anchovy hydrolysate paste (AHP) was carried out to improve the sensory quality of salted and fermented fish. Homogenized whole anchovy was hydrolyzed using commercial pretenses, Complex enzyme-2000 (CE, Pacific Chem. Co.) and Alcalase (AL, Novo), in a cylindrical vessel with 4 baffle plates and 6-bladed turbine impeller. Optimal pH, temperature, and enzyme concentration for the hydrolysis with CE and AL were $7.0,\;52^{\circ}C,\;7\%$, and $8.0,\;60^{\circ}C,\;6\%$, respectively. The rational amount of water for homogenization, agitation speed, and hydrolyzing time were $100\%\;(w/w)$, 100 rpm, and 210 min, respectively. To make the hydrolysate to paste type, it was effective to mix the additives, such as starch, soybean protein, agar, and carrageenan gum to the hydrolysate 5 min before the end of boiling at $100^{\circ}C$ for 30 min. Minimal NaCl concentration for long-term preservation was $15\%$, and this could be reduced to $12\%$ by adding $5\%$ of KCl. yield of the AHP based on the total nitrogen content was $94.6\~97.0\%,\;and\;86.0\~89.2\%$, of the nitrogen was amino nitrogen. Salinity, pH and histamine content of the AHP prepared with $12\%$ NaCl and $5\%$ KCl were $9.3\~9.9\%,\;6.1\~6.2$, and below 13 mg/100 g, respectively. The AHP was stable at $26{\pm}3^{\circ}C$ for 60 days on bacterial growth, and addition of $0.05\%$ of rosemary (Herbalox) extract was effective to inhibit the lipid oxidation of the AHP during storage.

  • PDF

Optimization of Growth Medium and Fermentation Conditions for the Production of Laccase3 from Cryphonectria parasitica Using Recombinant Saccharomyces cerevisiae

  • Jeong, Yong-Seob;Sob, Kum-Kang;Lee, Ju-Hee;Kim, Jung-Mi;Chun, Gie-Taek;Chun, Jeesun;Kim, Dae-Hyuk
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.512-520
    • /
    • 2019
  • Statistical experimental methods were used to optimize the medium for mass production of a novel laccase3 (Lac3) by recombinant Saccharomyces cerevisiae TYEGLAC3-1. The basic medium was composed of glucose, casamino acids, yeast nitrogen base without amino acids (YNB w/o AA), tryptophan, and adenine. A one-factor-at-a-time approach followed by the fractional factorial design identified galactose, glutamic acid, and ammonium sulfate, as significant carbon, nitrogen, and mineral sources, respectively. The steepest ascent method and response surface methodology (RSM) determined that the optimal medium was (g/L): galactose, 19.16; glutamic acid, 5.0; and YNB w/o AA, 10.46. In this medium, the Lac3 activity (277.04 mU/mL) was 13.5 times higher than that of the basic medium (20.50 mU/mL). The effect of temperature, pH, agitation (rpm), and aeration (vvm) was further examined in a batch fermenter. The best Lac3 activity was 1176.04 mU/mL at 25 ℃, pH 3.5, 100 rpm, and 1 vvm in batch culture.

Low-dose intravenous ketamine versus intravenous ketorolac in pain control in patients with acute renal colic in an emergency setting: a double-blind randomized clinical trial

  • Sotoodehnia, Mehran;Farmahini-Farahani, Mozhgan;Safaie, Arash;Rasooli, Fatemeh;Baratloo, Alireza
    • The Korean Journal of Pain
    • /
    • v.32 no.2
    • /
    • pp.97-104
    • /
    • 2019
  • Background: This study was conducted to compare the effectiveness of low-dose ketamine versus ketorolac in pain control in patients with acute renal colic presenting to the emergency department (ED). Methods: This is a double-blind randomized clinical trial. The initial pain severity was assessed using the numerical rating scale (NRS). Then, ketamine or ketorolac was administered intravenously at a dose of 0.6 mg/kg and 30 mg respectively. The pain severity and adverse drug reactions were recorded 5, 15, 30, 60, and 120 min thereafter. Results: The data of 62 subjects in the ketamine group and 64 patients in the ketorolac group were analyzed. The mean age of the patients was $34.2{\pm}9.9$ and $37.9{\pm}10.6\;years$ in the ketamine and ketorolac group, respectively. There was no significant difference in the mean NRS scores at each time point, except for the 5 min, between the two groups. Despite a marked decrease in pain severity in the ketamine group from drug administration at the 5 min, a slight increase in pain was observed from the 5 min to the 15 min. The rate of adverse drug reactions, including dizziness (P = 0.001), agitation (P = 0.002), increased systolic blood pressure (> 140 mmHg), and diastolic blood pressure (> 90 mmHg) was higher in the ketamine group. Conclusions: Low dose ketamine is as effective as ketorolac in pain management in patients with renal colic presenting to the ED. However, it is associated with a higher rate of adverse drug reactions.

Development of Miniaturized Culture Systems for Large Screening of Mycelial Fungal Cells of Aspergillus terreus Producing Itaconic Acid

  • Shin, Woo-Shik;Lee, Dohoon;Kim, Sangyong;Jeong, Yong-Seob;Chun, Gie-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.101-111
    • /
    • 2017
  • The task of improving a fungal strain is highly time-consuming due to the requirement of a large number of flasks in order to obtain a library with enough diversity. In addition, fermentations (particularly those for fungal cells) are typically performed in high-volume (100-250 ml) shake-flasks. In this study, for large and rapid screening of itaconic acid (IA) high-yielding mutants of Aspergillus terreus, a miniaturized culture method was developed using 12-well and 24-well microtiter plates (MTPs, working volume = 1-2 ml). These miniaturized MTP fermentations were successful, only when highly filamentous forms were induced in the growth cultures. Under these conditions, loose-pelleted morphologies of optimum sizes (less than 0.5 mm in diameter) were casually induced in the MTP production cultures, which turned out to be the prerequisite for the active IA biosynthesis by the mutated strains in the miniaturized fermentations. Another crucial factor for successful MTP fermentation was to supply an optimal amount of dissolved oxygen into the fermentation broth through increasing the agitation speed (240 rpm) and reducing the working volume (1 ml) of each 24-well microtiter plate. Notably, almost identical fermentation physiologies resulted in the 250 ml shake-flasks, as well as in the 12-well and 24-well MTP cultures conducted under the respective optimum conditions, as expressed in terms of the distribution of IA productivity of each mutant. These results reveal that MTP cultures could be considered as viable alternatives for the labor-intensive shake-flask fermentations even for filamentous fungal cells, leading to the rapid development of IA high-yield mutant strains.

Numerical Study of Agitation Performance in a Drilling Mud Mixing Tank to Non-Newtonian Rheological Properties (시추용 머드혼합탱크의 비뉴턴 유체 모델에 대한 교반성능의 수치해석적 연구)

  • Im, Hyo-Nam;Lee, Hee-Woong;Lee, In-Su;Choi, Jae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.29-37
    • /
    • 2014
  • Non-Newtonian fluid mechanics takes charge of an important role in the oil industries. Especially in the oil well drilling process, the drilling fluid such as mud keeps the drill bit cool and clean during drilling, with suspending drill cuttings and lubricating a drill bit. The purpose of this study is to examine the effect of fluid mud rheological properties to predict different characteristics of non-Newtonian fluid in the mud mixing tank on offshore drilling platforms. In this paper, ANSYS fluent package was used for the simulation to solve the hydrodynamic force and to evaluate mud mixing time. Prediction of the power consumption and the pumping effectiveness has been presented with different operating fluid models as Newtonian and non-Newtonian fluid. The comparison between Newtonain mud model and non-Newtonian mud model is confirmed by the CFD simulation method of drilling mud mixing tank. The results present useful information for the design of the drilling mud mixing tanks and provide some guidance on the use of CFD tool for such non-Newtonian fluid flow.

Biosurfactant as a microbial pesticide

  • Lee, Baek-Seok;Choi, Sung-Won;Choi, Ki-Hyun;Lee, Jae-Ho;Kim, Eun-Ki
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.40-44
    • /
    • 2003
  • Soil-borne infectious disease including Pythium aphanidermatum and Rhizoctonia solani causes severe damage to plants, such as cucumber. This soil-borne infectious disease was not controlled effectively by chemical pesticide. Since these diseases spread through the soil, chemical agents are usually ineffective. Instead, biological control, including antagonistic microbe can be used as a preferred control method. An efficient method was developed to select an antagonistic strain to be used as a biological control agent strain. In this new method, surface tension reduction potential of an isolate was included in the ‘decision factor’ in addition to the other factors, such as growth rate, and pathogen inhibition rate. Considering these 3 decision factors by a statistical method, an isolate from soil was selected and was identified as Bacillus sp. GB16. In the pot test, this strain showed the best performance among the isolated strains. The lowest disease incidence rate and fastest seed growth was observed when Bacillus sp. GB16 was used. Therefore this strain was considered as plant growth promoting rhizobacteria (PGPR). The action of surface tension reducing component was deduced as the enhancement of wetting, spreading, and residing of antagonistic strain in the rhizosphere. This result showed that new selection method was significantly effective in selecting the best antagonistic strain for biological control of soil-borne infectious plant pathogen. The antifungal substances against P. aphanidermatum and R. solani were partially purified from the culture filtrates of Bacillus sp. GB16. In this study, lipopeptide possessing antifungal activity was isolated from Bacillus sp. GB16 cultures by various purification procedures and was identified as a surfactin-like lipopeptide based on the Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), high performance liquid chromatography mass spectroscopy (HPLC-MS), and quadrupole time-of-flight (Q-TOF) ESI-MS/MS data. The lipopeptide, named GB16-BS, completely inhibited the growth of Pythium aphanidermatum, Rhizoctonia solani, Penicillium sp., and Botrytis cineria at concentrations of 10 and 50 mg/L, respectively. A novel method to prevent the foaming and to provide oxygen was developed. During the production of surface active agent, such as lipopeptide (surfactin), large amount of foam was produced by aeration. This resulted in the carryover of cells to the outside of the fermentor, which leads to the significant loss of cells. Instead of using cell-toxic antifoaming agents, low amount of hydrogen peroxide was added. Catalase produced by cells converted hydrogen peroxide into oxygen and water. Also addition of corn oil as an oxygen vector as well as antifoaming agent was attempted. In addition, Ca-stearate, a metal soap, was added to enhance the antifoam activity of com oil. These methods could prevent the foaming significantly and maintained high dissolved oxygen in spite of lower aeration and agitation. Using these methods, high cell density, could be achieved with increased lipopeptide productivity. In conclusion to produce an effective biological control agent for soil-borne infectious disease, following strategies were attempted i) effective screening of antagonist by including surface tension as an important decision factor ii) identification of antifungal compound produced from the isolated strain iii) novel oxygenation by $H_2O_2-catalase$ with vegetable oil for antifungal lipopeptide production.

  • PDF

Characteristics of Flow Pattern and Mass Transfer in a Shaking Vessel with Figure-Eight Circulating Motion (8자 진동교반에 의한 교반조내 유동상태 및 물질전달 특성)

  • Lee, Young Sei;Kato, Yoshihito
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.174-180
    • /
    • 2015
  • The flow pattern and the solid-liquid mass transfer coefficient in figure-eight shaking vessels were observed by experimental method. The flow patterns, mixing time, power consumption and mass transfer coefficient in the figureeight shaking vessels changed irregularly with increase in the shaking frequency. Any frequency, even in the Fr = 0.095 or more became clear experimentally. The region of the optimum operating condition of the figure-eight shaking was larger than that of the reciprocal shaking. The solid-liquid mass transfer coefficient was correlated with the same correlation as that of the rotary shaking vessel of existing. The gas-liquid mass transfer coefficient of the figure-eight shaking vessel was also correlated with the same type of correlation as that of the rotary shaking vessel of existing.

A Study of Enzymatic and Water Degumming Using Crude Canola Oil (Crude Canola Oil의 효소 탈검과 수용성 탈검에 관한 연구)

  • Jang, Myung Gwi;Kim, Deog Keun;Park, Soon Chul;Lee, Jin Suk;Kim, Seung Wook
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.480-484
    • /
    • 2011
  • In this study, degumming process was carried out for reducing to less than 10 ppm of phosphorus contents and primary properties of crude canola oil including 0.64 mgKOH/g of acid value, 0.09% of water contents, 0.13% of insoluble impurities, and 40 ppm of phosphorus contents. Efficiency of water degumming and enzymatic degumming was compared for the selection of suitable process obtaining feedstock of biodiesel. Degumming method was determined for preparation of raw material of biodiesel, and reaction conditions were also established. The most effective conditions for water degumming were 2% distilled water (w/w oil), $30^{\circ}C$ of reaction temperature, 900 rpm of agitation speed, and 30 min of reaction time, respectively. In case of enzymatic degumming, optimal conditions were found to be 90 ppm of phospholipase A2 (w/w oil), $50^{\circ}C$ of reaction temperature at pH 5, respectively. When comparing water degumming with enzymatic degumming, efficiency of enzymatic degumming was better than water degumming. However, water degumming method was much more suitable for the production of biodiesel feedstock considering reaction time and process feasibility.