• 제목/요약/키워드: Aging heat treatment

검색결과 313건 처리시간 0.032초

MA법으로 제조된 Ni기 합금에서 Y2O3 첨가에 따른 인장강도변화와 시효처리 효과 (Variation of Tensile Strength by Addition of Y2O3 and Effect of Aging Treatment in Ni Base Alloy Fabricated by MA Method)

  • 김일호;이원식;고세현;장진만;권숙인
    • 한국분말재료학회지
    • /
    • 제15권1호
    • /
    • pp.23-30
    • /
    • 2008
  • Ni-20Cr-20Fe-5Nb alloy with or without $Y_2O_3$ was manufactured by mechanical alloying process and consolidated by spark plasma sintering (SPS). The grain size of the alloy with $Y_2O_3$ was smaller than that of alloy without $Y_2O_3$ which results from the effect of $Y_2O_3$ suppressing grain growth. The tensile strength at room temperature was increased by the addition of $Y_2O_3$ but decreased abruptly at temperature above $600^{\circ}C$. It seems to result from the change of deformation mechanism due to fine grain size, that is, grain boundary sliding is predominant at above $600^{\circ}C$ while internal dislocation movement is predominant at below $600^{\circ}C$. After conventional heat treatment process of solution treatment and aging, a small amount of ${\delta}(Ni_3Nb)$ phase was formed in Ni-20Cr-20Fe-5Nb alloy while a large amount of ${\gamma}"(Ni_3Nb)$ was formed in Inconel 718 in the previous report. This is due to exhaustion of Nb content by the formation of NbC during consolidation.

Intergranular Corrosion Mechanism of Slightly-sensitized and UNSM-treated 316L Stainless Steel

  • Lee, J.H.;Kim, K.T.;Pyoun, Y.S.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제15권5호
    • /
    • pp.226-236
    • /
    • 2016
  • 316L stainless steels have been widely used in many engineering fields, because of their high corrosion resistance and good mechanical properties. However, welding or aging treatment may induce intergranular corrosion and stress corrosion cracking etc. Since these types of corrosion are closely related to the formation of chromium carbide in grain boundaries, the alloys are controlled by methods such as the lowering of carbon content, solution heat treatment. This work focused on the intergranular corrosion mechanism of slightly-sensitized and Ultrasonic Nano-crystal Surface Modification (UNSM)-treated 316L stainless steel. Samples were sensitized for 1, 5, and 48 hours at $650^{\circ}C$ in $N_2$ gas atmosphere. Subsequently UNSM treatments were carried out on the surface of the samples. The results were discussed on the basis of the sensitization by chromium carbide and carbon segregation, the residual stress and grain refinement. Even though chromium carbide was not precipitated, the intergranular corrosion rate of 316L stainless steel was drastically increased with aging time, and it was confirmed that the increased intergranular corrosion rate of slightly-sensitized (not carbide formed) 316L stainless steel was due to the carbon segregation along the grain boundaries. However, UNSM treatment improved the intergranular corrosion resistance of aged stainless steels, and its improvement was due to the reduction of carbon segregation and the grain refinement of the outer surface, including the introduction of compressive residual stress.

급속응고한 Al-Mg 합금의 미세조직 및 인장특성에 미치는 첨가원소의 영향 (Effects of Alloying Elements on the Microstructure and Tensile Properties of Rapidly Solidified Al-Mg Alloys)

  • 박현호;박종성;김명호
    • 한국주조공학회지
    • /
    • 제17권4호
    • /
    • pp.356-364
    • /
    • 1997
  • In order to study effects of Cu and Be on the microstructure and tensile properties of rapidly solidified Al-Mg alloys, Al-Mg-Cu-Be alloys have been rapidly solidified by inert gas atomization process. Microstructure of rapidly solidified Al-Mg-Cu-Be powders exhibited refinement and good dispersion of Be particles as increasing of solidification rate. Solidification rate of atomized powders was estimated to be about $5{\times}10^{3{\circ}}C/s$. Inert gas atomized Al-Mg-Cu-Be powders were hot-processed by vacuum hot pressing at $450^{\circ}C$ under 100 MPa and hot extruded with reduction ratio in area of 25: 1 at $450^{\circ}C$. The extruded Al-Mg-Cu-Be powders consisted of recrystallized fine Al grains and homogeneously dispersed fine Be particles, and exhibited improved tensile properties with increase in Cu content. $Al_2CuMg$ compounds precipitated in grain and grain boundaries of Al-Mg-Cu-Be alloys with aging heat treatment after solution treatment. Hardness and tensile properties were improved by increasing Cu content and Be addition. Compared with extruded Al-Mg-Cu powders, the extruded Al-Mg-Cu-Be powders exhibited finer recrystallized grains and improved tensile properties by dispersion hardening of Be and subgrain boundaries pinned by fine Be particles. After aging treatment, hardness and tensile properties were improved due to restricted precipitation by increasing of dislocation density around Be particles in matrix.

  • PDF

이음매 없는 304L 스테인리스강관의 부식특성에 미치는 열처리의 영향 (Effect of Heat Treatment on the Corrosion Properties of Seamless 304L Stainless Steel Pipe)

  • 김기태;엄상빈;김영식
    • Corrosion Science and Technology
    • /
    • 제16권6호
    • /
    • pp.305-316
    • /
    • 2017
  • Austenitic stainless steels have been widely used for various systems of nuclear power plants. Among these stainless steels, small pipes with diameter less than 14 inch have been produced in the form of seamless pipe. Annealing and cooling process during the manufacturing process can affect corrosion properties of seamless stainless steels. Therefore, 12 inch-diameter of as-received 304L stainless steel pipe was annealed and aged in this study. Intergranular corrosion resistance was evaluated by ASTM A262 Practice A, C, and E methods. The degree of sensitization was determined using a DL-EPR test. U-bend method in an autoclave was used to evaluate the SCC resistance in 0.01 M $Na_2S_4O_6$ or 40% NaOH solution at $340^{\circ}C$. As-received specimen showed relatively high degree of sensitization and intergranular corrosion rate. Carbon segregation was also observed near grain boundaries. Annealing treatment could give the dissolution of segregated carbon into the matrix. Aging treatment could induce segregation of carbon and finally form carbides. Microstructural analysis confirmed that high intergranular corrosion rate of the as-received seamless pipe was due to micro-galvanic corrosion between carbon segregation and grains.

A Study on the Evaluation of Mterial Degradaion for 2.25Cr-1Mo Steel using Ultrasonic Attenuation Characterization

  • Kim, Chung-Soek;Park, Ik-Keun;Park, Un-Su;Kim, Hyun-Mook;Kwun, Sook-In;Byeon, Jai-Won
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.319-323
    • /
    • 2001
  • In significant number of energy-related facilities for like thermal power plant or petro-chemical industry, CrMo steels are widely used energy conversion industries. However, these materials undergo precipitation of carbides or intermetallic compounds into grain boundary and change of internal microstructure such as coarsening of precipitation, decrease of solute elements and impurity segregation under more severe service conditions, which results in deterioration of inherent superior material characteristics. In this study, it was verified experimentally the feasibility of the aging degradation evaluation for degraded 2.25Cr-lMo steel specimens prepared by isothermal aging heat treatment at 63$0^{\circ}C$ by high frequency longitudinal ultrasonic and surface SH wave investigating the change of attenuation coefficient analyzed by spectral analysis. Attenuation coefficient had a tendency to increase as degradation proceeded.

  • PDF

삼채 잎 추출물의 예쁜꼬마선충에 대한 수명연장 효과 (Lifespan-extending Effects of Allium hookeri Leaves in Caenorhabditis elegans)

  • 기별희;이은별;김준형;양재헌;김대근;김영수
    • 생약학회지
    • /
    • 제48권4호
    • /
    • pp.314-319
    • /
    • 2017
  • To evaluate the longevity property of Allium hookeri (Liliaceae) leaves, this study was performed. Ethanol extract of A. hookeri was successively partitioned as methylene chloride, ethyl acetate, n-butanol and $H_2O$ soluble fractions, and lifespan-extending effects of the fractions were checked using Caenorhabditis elegans model system. The most active ethyl acetate-soluble fraction elevated heat stress tolerance, and increased expression of stress resistance protein. Further studies were performed to investigate several aging-related factors such as reproduction, food intake, growth and movement of C. elegans. The results revealed that there were no significant changes in aging-related factors including reproduction and food intake, however, ethyl acetate-soluble fraction treatment led to up-regulation of locomotory ability and growth of aged worms, suggesting ethyl acetate-soluble fraction affected healthspan as well as lifespan of nematode.

솔-젤법을 이용한 2-propanol 탈수소화 반응 Pt 촉매의 제조 (Preparation of Pt Catalysts for 2-propanol Dehydrogenation using Sol-gel Method)

  • 이영권;이화웅;송형근;나병기
    • Korean Chemical Engineering Research
    • /
    • 제45권4호
    • /
    • pp.328-334
    • /
    • 2007
  • 2-propanol/acetone/hydrogen 계 화학반응 열펌프 시스템은 발전소의 폐열 등을 이용하기 위한 가장 적합한 반응계로 알려져 있다. 솔-젤법을 이용하여 2-propanol 탈수소화 반응용 5 wt% Pt-alumina 촉매를 다양한 형태로 제조하여 각각의 특성을 알아보았고 각각의 반응성을 비교하였다. Pt-alumina xerogel 촉매는 기존의 담지촉매보다 우수한 반응성을 보였으며 또한 지속성도 우수한 것으로 나타났다. 또한, Pt-alumina aerogel 촉매가 반응속도 면에서 가장 우수한 결과를 보였다. Aerogel 촉매의 지속성을 유지시키기 위해서는 충분한 시간의 숙성과정이 필요한 것으로 나타났으며 이 과정을 통해서 높은 반응성은 물론 안정적인 지속성도 얻을 수 있었다. Pt-alumina aerogel 촉매의 가장 큰 특징은 높은 반응성은 물론, 일반적으로 반응전에 필수적으로 거쳐야하는 고온의 열처리가 전혀 필요 없다는 것으로서 이는 경제적으로 큰 이점을 가진다. 또한 alumina xerogel에 초기함침법으로 Pt를 담지시킨 촉매는 기계적 강도 및 반응성 면에서 우수한 성능을 보였으며 이를 통하여 alumina xerogel은 금속촉매의 지지체로서도 이용할 수 있다는 사실을 알 수 있었다.

A Study of the Slip Structure of an Aged and Deformed Nickel-Base Superalloy

  • Park, Hyung-Sup;Park, Ju
    • Nuclear Engineering and Technology
    • /
    • 제2권3호
    • /
    • pp.163-178
    • /
    • 1970
  • 닉켈기 내열합금의 일종인 Rene 41을 76$0^{\circ}C$ 및 87$0^{\circ}C$에서 최고 9300 시간까지 시효열처리한 다음, 5% 내지 20%로 압축변형시켜, 이 합금의 실온에서의 소성변형방식 및 석출입자인 ${\gamma}$'입자와 slip line 간의 상호작용을 전자현미경적 방법으로 관찰연구하였다. 본합금의 slip구조는 $\alpha$황동때와 유사하게{111}<110>계에 속하는 단일 slip line으로 구성되어 있었으며, 순알루미늄에서 관찰되는 층상구조는 볼 수 없었다. 또한, slip 구조는 시효조건에 따라 변화한다는 것을 알 수 있었다. 미시효상태뿐만 아니라 과시효상태에 있어서도 Slip line은 여전히${\gamma}$' 석출입자를 통과하였으며, 이 때 석출입자는 지금과 더불어 변형되는 것을 볼 수 있었다. 이 관찰결과를 앞서 발표된 자료와 비교 검토하여 과시효상태에서도 ${\gamma}$'입자는 적어도 일부 지금과 정합되어 있다는 결론을 얻었다.

  • PDF

몰드변압기용 에폭시 수지의 열 열화특성에 관한 연구 (A Study on the Thermal Degradation Properties of Epoxy Resin for Cast Resin Transformer)

  • 임경범;남기동;김기환;박수홍;황명환
    • 한국화재소방학회논문지
    • /
    • 제22권2호
    • /
    • pp.44-48
    • /
    • 2008
  • 본 논문은 몰드변압기용 에폭시수지의 열 열화특성을 고찰하기 위하여, 접촉각, 표면저항률 및 XPS를 측정하였다. 실험결과, 표면에서 재가교를 일으킴에 따라 접촉각은 $200^{\circ}C$까지는 증가하다가 $250^{\circ}C$에서는 열응축이 발생되어 접촉각이 감소하는 경향을 나타내었다. XPS분석을 통하여 산소/탄소 피크치를 조사한 결과, 최초 미처리의 시료에서는 탄소에 대한 산소의 피크치가 더 높게 나타났으나, 열처리 후에는 그와 반대되는 경향을 나타내었다. 이러한 탄소피크의 증가는 $200^{\circ}C$까지 나타났고 그 이상의 온도에서는 다시 감소하였다. 이것은 $200^{\circ}C$까지는 안정된 표면구조를 형성하다가 $250^{\circ}C$에서는 급격한 산화가 발생됨으로써 탄소결합이 파괴되었기 때문이다. 이는 급격한 표면활성화에 따른 친수화로 도전로가 쉽게 형성되었기 때문이다.

STACIR/AW 410SQmm 가공송전선의 경년열화와 이도거동(III) (Sag Behavior of STACIR/AW 410SQmm Overhead Conductor in accordance with the Aging)

  • 김상수;김병걸;신구용;이동일;민병욱
    • 한국전기전자재료학회논문지
    • /
    • 제19권3호
    • /
    • pp.280-286
    • /
    • 2006
  • As a way to expand electric capacity in conductor with electric power demand, STACIR/AW (Super Thermal-resistant Aluminum-alloy Conductors Aluminum-clad Invar-Reinforced) conductor which has high electric current and heat resistance characteristics have been developed. STACIR/AW power line is mechanical composite wire composed of steel cores for dip control and aluminum conductors for sending electric current. Recently, to ensure stable operation and prediction of wire life span of STACIR/AW conductor, a heat property of STACIR/AW conductor have been investigated. In the present work, a change of essential property with long term-heat exposure of STACIR/AW conductor and its structure material, INVAR wire and Al conductor, have been investigated. INVAR/AW is approximately $3.2\;{\mu}m/m^{\circ}C$. thermal expansion coefficient of INVAR/AW wire increases with time of heat exposure. the thermal expansion coefficient of INVAR/AW is markedly influenced by heat and mechanical treatment. creep rate(0.242) of STACIR/AW $410\;mm^2$ conductor at room temperature is much higher than that(0.022) at $210\;^{\circ}C$ STACIR/AW $410\;mm^2$ conductor has minimum creep rate at operating temperature. To lower creep rate with increase temperature is more unique characteristics in STACIR/AW. It is expected that STACIR/AW turned its tension to INVAR/AW at the transition temperature. at room temperature, the tension apportionment of INVAR/AW in STACIR/AW is about $50\;\%$. but whole tension of STACIR/AW is placed on the INVAR/AW alone of core metal above transition temperature.