삼채 잎 추출물의 예쁜꼬마선충에 대한 수명연장 효과

Lifespan-extending Effects of Allium hookeri Leaves in Caenorhabditis elegans

  • 기별희 (전북대학교 식품공학과) ;
  • 이은별 (농촌진흥청 국립농업과학원 기능성식품과) ;
  • 김준형 (우석대학교 약학대학) ;
  • 양재헌 (전북대학교 헬스케어기술개발사업단) ;
  • 김대근 (우석대학교 약학대학) ;
  • 김영수 (전북대학교 식품공학과)
  • Ki, Byeolhui (Department of Food Science and Technology, Chonbuk National University) ;
  • Lee, Eun Byeol (Functional Food & Nutrition Division, Department of Agro-food Resources, Rural Development Administration) ;
  • Kim, Jun Hyeong (College of Pharmacy, Woosuk University) ;
  • Yang, Jae Heon (Center for Healthcare Technology Development, Chonbuk National University) ;
  • Kim, Dae Keun (College of Pharmacy, Woosuk University) ;
  • Kim, Young-Soo (Department of Food Science and Technology, Chonbuk National University)
  • 투고 : 2017.11.06
  • 심사 : 2017.12.06
  • 발행 : 2017.12.29

초록

To evaluate the longevity property of Allium hookeri (Liliaceae) leaves, this study was performed. Ethanol extract of A. hookeri was successively partitioned as methylene chloride, ethyl acetate, n-butanol and $H_2O$ soluble fractions, and lifespan-extending effects of the fractions were checked using Caenorhabditis elegans model system. The most active ethyl acetate-soluble fraction elevated heat stress tolerance, and increased expression of stress resistance protein. Further studies were performed to investigate several aging-related factors such as reproduction, food intake, growth and movement of C. elegans. The results revealed that there were no significant changes in aging-related factors including reproduction and food intake, however, ethyl acetate-soluble fraction treatment led to up-regulation of locomotory ability and growth of aged worms, suggesting ethyl acetate-soluble fraction affected healthspan as well as lifespan of nematode.

키워드

참고문헌

  1. Herman, D. (1956) Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11: 298-300. https://doi.org/10.1093/geronj/11.3.298
  2. Beckman, K. B. and Ames, B. N. (1998) The free radical theory of aging matures. Physiol. Rev. 78: 547-581. https://doi.org/10.1152/physrev.1998.78.2.547
  3. Si, H. and Liu, D. (2014) Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. J. Nutr. Biochem. 25: 581-591. https://doi.org/10.1016/j.jnutbio.2014.02.001
  4. Liao, V. H. C., Yu, C. W., Chu, Y. J., Li, W. H., Hsieh, Y. C. and Wang, T. T. (2011) Curcumin-mediated lifespan extension in Caenorhabdits elegans. Mech. Ageing Dev. 132: 480-487. https://doi.org/10.1016/j.mad.2011.07.008
  5. Bass, T. M., Weinkove, D., Houthoodf, K., Gems, D. and Patridge, L. (2007) Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech. Ageing Dev. 128: 546-552. https://doi.org/10.1016/j.mad.2007.07.007
  6. Grunz, G., Haas, K., Soukup, S., Klingenspor, M., Kulling, S. E., Daniel, H. and Spanier, B. (2012) Structural features and bioavailability of four flavonoids and their implications for lifespan-extending and antioxidant actions in C. elegans. Mech. Ageing Dev. 133: 1-10. https://doi.org/10.1016/j.mad.2011.11.005
  7. Pandey, R., Gupta, S., Shukla, V., Tandon, S. and Shukla, V. (2013) Antiaging, antistress and ROS scavenging activity of crude extract of Ocimum sanctum (L.) in Caenorhabditis elegans (Maupas, 1900). Indian J. Exp. Biol. 51: 515-521.
  8. Tiwari, S., Singh, S., Pandey, P., Saikia, S. K., Negi, A. S., Gupta, S. K., Pandey, R. and Banerjee, S. (2014) Isolation, structure determination, and antiaging effects of 2,3-pentanediol from endophytic fungus of Curcuma amada and docking studies. Protoplasma 251: 1089-1098. https://doi.org/10.1007/s00709-014-0617-0
  9. Ki, B., Lee, E. B., Kim, J. H., Yang, J. H., Kim, D. K. and Kim. Y.-S. (2017) Anti-oxidative effects of Allium hookeri leaves in Caenorhabditis elegans. Kor. J. Pharmacogn. 48: 141-147.
  10. Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
  11. Lithgow, G. J., White, T. M., Melov, S. and Johnson, T. E. (1995) Thermo tolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl. Acad. Sci. 92: 7540-7544. https://doi.org/10.1073/pnas.92.16.7540
  12. Lee, E.Y., Shim, Y. H., Chitwood, D. J., Hwang, S. B., Lee, J. and Paik, Y. K. (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun. 328: 929-936. https://doi.org/10.1016/j.bbrc.2005.01.050
  13. Guha, S., Natarajan, O., Murbach, C. G., Dinh, J., Wilson, E. C., Cao, M., Zou, S. and Dong, Y. (2014) Supplement timing of cranberry extract plays a key role in promoting Caenorhabditis elegans healthspan. Nutrients 21: 911-921.
  14. Hope, I. A. (1999) Background on Caenorhabditis elegans. In C. elegans: A Practical Approach, 1-15. Oxford University Press, NY.
  15. Kaletta, T. and Henartner, M. O. (2006) Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov. 5: 387-399. https://doi.org/10.1038/nrd2031
  16. Kobet, R. A., Pan, X., Zhang, B., Pak, S. C., Asch, A. S. and Lee, M. H. (2014) Caenorhabditis elegans: A model system for anti-cancer drug discovery and therapeutic target identification. Biomol. Ther. 22: 371-383. https://doi.org/10.4062/biomolther.2014.084
  17. van der Bliek, A. M., Sedensky, M. M. and Morgan, P. G. (2017) Cell biology of the mitochondrion. Genetics 207: 843-871. https://doi.org/10.1534/genetics.117.300262
  18. Rieckher, M. and Tavernarakis, N. (2017) Caenorhabditis elegans microinjection. Bio. Protoc. 7: e2565.
  19. Salim, C. and Rajini, P. S. (2016) Glucose-rich diet aggravates monocrotophos-induced dopaminergic neuronal dysfunction in Caenorhabditis elegans. J. Appl. Toxicol. 37: 772-780.
  20. Hostettler, L., Grundy, L., Kaser-Pebernard, S., Wicky, C., Schafer, W. R. and Glauser, D. A. (2017) The bright fluorescent protein mNeonGreen facilitates protein expression analysis in vivo. G3 (Bethesda) 7: 607-615.