Browse > Article

Lifespan-extending Effects of Allium hookeri Leaves in Caenorhabditis elegans  

Ki, Byeolhui (Department of Food Science and Technology, Chonbuk National University)
Lee, Eun Byeol (Functional Food & Nutrition Division, Department of Agro-food Resources, Rural Development Administration)
Kim, Jun Hyeong (College of Pharmacy, Woosuk University)
Yang, Jae Heon (Center for Healthcare Technology Development, Chonbuk National University)
Kim, Dae Keun (College of Pharmacy, Woosuk University)
Kim, Young-Soo (Department of Food Science and Technology, Chonbuk National University)
Publication Information
Korean Journal of Pharmacognosy / v.48, no.4, 2017 , pp. 314-319 More about this Journal
Abstract
To evaluate the longevity property of Allium hookeri (Liliaceae) leaves, this study was performed. Ethanol extract of A. hookeri was successively partitioned as methylene chloride, ethyl acetate, n-butanol and $H_2O$ soluble fractions, and lifespan-extending effects of the fractions were checked using Caenorhabditis elegans model system. The most active ethyl acetate-soluble fraction elevated heat stress tolerance, and increased expression of stress resistance protein. Further studies were performed to investigate several aging-related factors such as reproduction, food intake, growth and movement of C. elegans. The results revealed that there were no significant changes in aging-related factors including reproduction and food intake, however, ethyl acetate-soluble fraction treatment led to up-regulation of locomotory ability and growth of aged worms, suggesting ethyl acetate-soluble fraction affected healthspan as well as lifespan of nematode.
Keywords
Allium hookeri; Caenorhabditis elegans; Longevity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kobet, R. A., Pan, X., Zhang, B., Pak, S. C., Asch, A. S. and Lee, M. H. (2014) Caenorhabditis elegans: A model system for anti-cancer drug discovery and therapeutic target identification. Biomol. Ther. 22: 371-383.   DOI
2 van der Bliek, A. M., Sedensky, M. M. and Morgan, P. G. (2017) Cell biology of the mitochondrion. Genetics 207: 843-871.   DOI
3 Rieckher, M. and Tavernarakis, N. (2017) Caenorhabditis elegans microinjection. Bio. Protoc. 7: e2565.
4 Salim, C. and Rajini, P. S. (2016) Glucose-rich diet aggravates monocrotophos-induced dopaminergic neuronal dysfunction in Caenorhabditis elegans. J. Appl. Toxicol. 37: 772-780.
5 Hostettler, L., Grundy, L., Kaser-Pebernard, S., Wicky, C., Schafer, W. R. and Glauser, D. A. (2017) The bright fluorescent protein mNeonGreen facilitates protein expression analysis in vivo. G3 (Bethesda) 7: 607-615.
6 Herman, D. (1956) Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11: 298-300.   DOI
7 Beckman, K. B. and Ames, B. N. (1998) The free radical theory of aging matures. Physiol. Rev. 78: 547-581.   DOI
8 Si, H. and Liu, D. (2014) Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. J. Nutr. Biochem. 25: 581-591.   DOI
9 Liao, V. H. C., Yu, C. W., Chu, Y. J., Li, W. H., Hsieh, Y. C. and Wang, T. T. (2011) Curcumin-mediated lifespan extension in Caenorhabdits elegans. Mech. Ageing Dev. 132: 480-487.   DOI
10 Bass, T. M., Weinkove, D., Houthoodf, K., Gems, D. and Patridge, L. (2007) Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech. Ageing Dev. 128: 546-552.   DOI
11 Grunz, G., Haas, K., Soukup, S., Klingenspor, M., Kulling, S. E., Daniel, H. and Spanier, B. (2012) Structural features and bioavailability of four flavonoids and their implications for lifespan-extending and antioxidant actions in C. elegans. Mech. Ageing Dev. 133: 1-10.   DOI
12 Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
13 Pandey, R., Gupta, S., Shukla, V., Tandon, S. and Shukla, V. (2013) Antiaging, antistress and ROS scavenging activity of crude extract of Ocimum sanctum (L.) in Caenorhabditis elegans (Maupas, 1900). Indian J. Exp. Biol. 51: 515-521.
14 Tiwari, S., Singh, S., Pandey, P., Saikia, S. K., Negi, A. S., Gupta, S. K., Pandey, R. and Banerjee, S. (2014) Isolation, structure determination, and antiaging effects of 2,3-pentanediol from endophytic fungus of Curcuma amada and docking studies. Protoplasma 251: 1089-1098.   DOI
15 Ki, B., Lee, E. B., Kim, J. H., Yang, J. H., Kim, D. K. and Kim. Y.-S. (2017) Anti-oxidative effects of Allium hookeri leaves in Caenorhabditis elegans. Kor. J. Pharmacogn. 48: 141-147.
16 Lithgow, G. J., White, T. M., Melov, S. and Johnson, T. E. (1995) Thermo tolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl. Acad. Sci. 92: 7540-7544.   DOI
17 Lee, E.Y., Shim, Y. H., Chitwood, D. J., Hwang, S. B., Lee, J. and Paik, Y. K. (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun. 328: 929-936.   DOI
18 Guha, S., Natarajan, O., Murbach, C. G., Dinh, J., Wilson, E. C., Cao, M., Zou, S. and Dong, Y. (2014) Supplement timing of cranberry extract plays a key role in promoting Caenorhabditis elegans healthspan. Nutrients 21: 911-921.
19 Hope, I. A. (1999) Background on Caenorhabditis elegans. In C. elegans: A Practical Approach, 1-15. Oxford University Press, NY.
20 Kaletta, T. and Henartner, M. O. (2006) Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov. 5: 387-399.   DOI