• Title/Summary/Keyword: Aging Condition

Search Result 828, Processing Time 0.034 seconds

An Evaluation of Tensile Characteristics of the Stress Aging Heat-treated SM45C Steel by Acoustic Emissions (음향방출법에 의한 SM45C 응력시효 처리재의 인장특성 평가)

  • Rhee, Zhang-Kyu;Park, Bog-Nam
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2009.04a
    • /
    • pp.413-421
    • /
    • 2009
  • This paper investigates tensile characteristics of the stress aging heat-treated SM45C steel which are aging temperature at $250^{\circ}C$, $300^{\circ}C$, aging time at 1, 3 hours, and applied load at 300, 400N conditions by using acoustic emission. Most suitable aging condition was aging temperature $300^{\circ}C$, aging time 1 hour, and aging applied load 300N. And increased yield load 28.3% than non-treatment specimen in this condition. AE energy in elastic limit increased about 16.7 times than non-treatment specimen. When aging time is 3 hours, yield load decreased than other conditions that possibility is high to have itself defect on inside the specimen or coarse grain size precipitation is different in happened over-aging phenomenon. Especially, in case of $300^{\circ}C$, 3 hours and 400N condition appeared AE energy in elastic limit fairly high about 30 times than non-treatment specimen. This is considered by emit a lot of energies when material causes plastic deformation because the ductility increases on specimen by over-aging phenomenon.

  • PDF

The Dissolution of Magnesium and Iron from Ferronickel Slag Depending on Aging Condition (Aging 조건에 따른 페로니켈 슬래그의 마그네슘 및 철 용출 특성)

  • Kim, Eun-Young;Choi, Sang-Won;Kim, Viktor;Li, Yujia;Park, Ji-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.350-356
    • /
    • 2013
  • Dissolution of ferronickel slag depending on aging condition was studied. Ferronickel slag typically contains 54.05% $SiO_2$, 34.33% MgO, and 5.51% $Fe_2O_3$. The main structure composite was similar to Enstatite [(Mg, $Fe^{2+}$ )$SiO_3$]. Ferronickel slag aging was made in 3 months under various experimental conditions, in water, bubbling water and wetting air. The most effective aging condition was the wetting air treatment. In this condition, the dissolving concentration of Mg and Fe was 80.0% and 75.1% respectively. The XRD and SEM data revealed that the wetting air condition also showed the biggest structural damage.

Evaluation of Nuclear Plant Cable Aging Through Condition Monitoring

  • Kim, Jong-Seog;Lee, Dong-Ju
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.475-484
    • /
    • 2004
  • Extending the lifetime of a nuclear power plant [(hereafter referred to simply as NPP)] is one of the most important concerns in the global nuclear industry. Cables are one of the long-life items that have not been considered for replacement during the design life of a NPP. To extend the cable life beyond the design life, it is first necessary to prove that the design life is too conservative compared with actual aging. Condition monitoring is useful means of evaluating the aging condition of cable. In order to simulate natural aging in a nuclear power plant. a study on accelerated aging must first be conducted. In this paper, evaluations of mechanical aging degradation for a neoprene cable jacket were performed after accelerated aging under tcontinuous and intermittent heating conditions. Contrary to general expectations, intermittent heating to the neoprene cable jacket showed low aging degradation, 50% break-elongation, and 60% indenter modulus, compared with continuous heating. With a plant maintenance period of 1 month after every 12 or 18 months operation, we can easily deduce that the life time of the cable jacket of neoprene can be extended much longer than extimated through the general EQ test. which adopts continuous accelerated aging for determining cable life. Therefore, a systematic approach that considers the actual environment conditions of the nuclear power plant is required for determining cable life.

Characteristic of High Voltage Aging in AC PDPs

  • Lee, Yong-Han;Kim, Oe-Dong;Ahn, Byoung-Nam;Choi, Kwang-Yeol;Kim, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.932-934
    • /
    • 2006
  • A relationship between discharge delay time and the aging method were investigated: A-Y (Address electrode - Scan electrode) aging and conventional X-Y(Common electrode - Scan electrode) aging with the variation of sustain voltage beyond self-erasing discharge. Although A-Y aging decreases discharge delay time, it has several drawbacks like non-uniformity of discharge, degradation of luminous efficiency and a color temperature. In a conventional aging condition which is carried out near the mid-margin voltage, discharge delay time is short in low voltage and high frequency condition. As an alternative to conventional voltage aging, high voltage aging is suggested which is carried out at self-erasing sustain voltage region. High voltage aging shows lower discharge delay time and fast aging speed than conventional voltage aging.

  • PDF

A Study on the Development of Type & Planning Criteria for the Senior citizen who lives alone in Home for the Elderly - A study on the model of co-housing for senior citizen who lives alone in the rural and fishing village (VI) - (독거노인용 경로홈의 유형개발과 계획기준의 연구 - 농어촌 독거노인을 위한 친환경 공동주거의 모형개발 연구(6) -)

  • Cho, Won-Seok;Kim, Heung-Gee
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.14 no.4
    • /
    • pp.27-35
    • /
    • 2012
  • The purpose of this study was to establish planning criteria and development of type for the senior citizen who lives alone in home for the elderly at rural and fishing villages. In order to take most suitable co-housing, this analysis is progressed various building types based on aging in place and aging in health; self care, nono care, service care and community care. This paper is to suggest collective housing with 10 types in large scale and extracted 19 types in detail scale. The basis of classification are location condition; aging in place, building condition, health care condition; aging in health and possession & operation condition. In viewpoint of dwelling welfare 'Home for the Elderly' is to concerned with systematic methodology and architectural typology for senior citizen who lives alone in the rural and fishing village.

A Study on Practicality of Condition Monitoring Method of Accelerated Thermal Aging CSPE (가속열화 된 CSPE 상태감시법 유효성 평가)

  • Lee, Jung-Hoon;Goo, Cheol-Soo;Kim, In-Yong;Shin, Yong-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2088-2092
    • /
    • 2011
  • The accelerated thermal aging of CSPE(chloro sulfonate polyethylene) of test cables were carried out for the period equal to 10, 20 and 30 years in air at $100^{\circ}C$, respectively. The CSPE cables(TAIHAN electric wire Co. Ltd) which installed in nuclear power plant for three years were used as starting materials. Condition monitering methods of the accelerated thermal aging of CSPE cables were estimated through indenter modulus and OIT(oxidation induction time) of IEC 62582, and those were newly estimated through volume electrical resistivity, ultrasound reflection time, density, FE-SEM(field emission scanning electron microscopy), XPS(x-ray photoelectron spectroscopy), EDS(energy dispersive spectroscopy), and WD-XRF(wavelength dispersive x-ray fluorescence). A new condition monitoring methods of the accelerated thermal aging of CSPE cables were generally coincident with trend of indenter modulus expect EDS, XPS and XRF. A volume electrical resistivity among new condition monitoring methods of the accelerated thermal aging of CSPE cables is excellent. It is considered that life-time of CSPE cable can be predicted through volume electrical resistivity, if CSPE jacket was aged for period such as more than 20 years.

A Study on Validation of Condition Monitering Method of Accelerated Thermal Aging CSPE (가속열화 된 CSPE 상태감시법의 유효성 연구)

  • Shin, Yong-Deok;Goo, Cheol-Soo;Kim, In-Yong;Lee, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1447-1448
    • /
    • 2011
  • The CSPE cables are used for three years in nuclear power plant. The accelerated thermal aging of chloro sulfonate polyethylene(CSPE) jacket of test cables were carried out for the period equal to 10, 20 and 30 years in air at 90 and $100^{\circ}C$, respectively. The electrical volume resistivity, density, XPS, FE-SEM, EDS and XRF of the accelerated thermal aging of CSPE were measured. The validation of condition monitering method of accelerated thermal aging CSPE was estimated by them. The best validation of condition monitoring method of accelerated aging CSPE is electrical volume resistivity because change thermal of the specimen showed distinction.

  • PDF

Surface Aging Properties of Silicon Rubber Insulator by salt-fog (Silicon rubber 애자의 salt-fog 표면열화 특성)

  • 이종찬;이운용;조한구;박대희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.255-257
    • /
    • 2001
  • In this paper, the silicon rubber insulator for transmission line was experimented for 1,000 hours aging test in salt-fog condition. To evaluate and examine the aging properties of silicon rubber insulator for test, the leakage current of surface was measured. Also hydrophobicity and scanning electron microscopy were compared with initial and aged sample respectively Above results, we can confirm that the surface properties of silicon rubber insulator easily aged by salt-fog condition.

  • PDF

Multi-phase Accelerating Test Method of Thermal Aging Considering Heat Generation of Electric Equipment (전기기기의 발열을 고려한 다단계 가속열노화 방법)

  • Lim, Byung-Ju;Park, Chang-Dae;Chung, Kyung-Yul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.5
    • /
    • pp.18-23
    • /
    • 2013
  • Thermal aging test is performed to qualify the life time of equipment in thermally aged condition. Due to long life time more than 10 years like as in power plant, the equipment is subjected to the accelerated thermal aging condition which is able to shorten the long aging test period by increasing aging temperature. Normally, conservatism of thermal aging test causes to impose unbalanced and excessive thermal load on components of the equipment, and deformation and damage problems of the components. Additionally, temperature rise of each component through heat generation of the electric equipment leads to long-term problem of the test period. Multi-phase accelerating aging test is to perform thermal aging test in multiple aging conditions after dividing into groups with various components of equipment. The groups might be classified considering various factors such as activation energy, temperature rise, glass transition temperature and melting temperature. In this study, we verify that the multi-phase accelerating aging test method can reduce and equalize the thermal over load of the components and shorten aging test time.

Effects of Pre-Aging Treatment on the Corrosion Resistance of Low Temperature Plasma Nitrocarburized AISI 630 Martensitic Precipitation Hardening Stainless Steel (저온 플라즈마 침질탄화처리된 마르텐사이트계 석출경화형 스테인리스강의 내식성에 미치는 시효 전처리의 영향)

  • Lee, Insup;Lee, Chun-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.2
    • /
    • pp.43-52
    • /
    • 2020
  • Various aging treatments were conducted on AISI 630 martensitic precipitation hardening stainless steel in order to optimize aging condition. Aging treatment was carried out in the vacuum chamber of Ar gas with changing aging temperature from 380℃ to 430℃ and aging time from 2h to 8h at 400℃. After obtaining the optimized aging condition, several nitrocarburizing treatments were done without and with the aging treatment. Nitrocarburizing was performed on the samples with a gas mixture of H2, N2 and CH4 for 15 h at vacuum pressure of 4.0 Torr and discharge voltage of 400V. The corrosion resistance was improved noticeably by combined process of aging and nitrocarburizing treatment, which is attributed to higher chromium and nitrogen content in the passive layer, as confirmed by XPS analysis. The optimized condition is finalized as, 4h aging at 400℃ and then subsequent nitrocarburizing at 400℃ with 25% nitrogen and 4% methane gas for 15h at vacuum pressure of 4.0 Torr and discharge voltage of 400V, resulting in the surface hardness of around 1300 HV0.05 and α'N layer thickness of around 11 ㎛ respectively.