• 제목/요약/키워드: Aging Cell

검색결과 865건 처리시간 0.025초

RADIOAUTOGRAPHIC ANALYSIS OF CHANGES IN DIFFERENT PHASES OF CELL KINETICS IN MURINE ORAL MUCOSA

  • PARK CHANG SUCK;You Dong Soo
    • 치과방사선
    • /
    • 제13권1호
    • /
    • pp.29-73
    • /
    • 1983
  • The age related changes in the life cycle of the progenitor cell population of murine oral epithelia was studied. Using radioautographic methods which have been adopted in previous cell cycle studies, the age-related changes of different phases in renewing cells of the palatal, buccal and lingual mucosae were determined. The results confirm published findings on cell cycle changes of epithelia with aging and illustrated further that mitotic phase which has hither to been considered stationary, also changes with aging. The major parts revealed by this study are as follows: 1) The basal progenitor cells in different regions of oral mucosa have different generation times. 2) The basal cell cycle time increases as a function of aging and the region most affected by aging appears to be the epithelium of the cheek. 3) The phases of the cell cycle affected by the process of aging are in increasing order of magnitude: M-, S- and G₁-phase. 4) The age elated change in the number of DNA synthesizing basal progenitor cells occurs at two age periods. Between 1 and 12 months of life it decreases, while from 12 to 20 months it increases.

  • PDF

Transcriptomic Analysis of Cellular Senescence: One Step Closer to Senescence Atlas

  • Kim, Sohee;Kim, Chuna
    • Molecules and Cells
    • /
    • 제44권3호
    • /
    • pp.136-145
    • /
    • 2021
  • Senescent cells that gradually accumulate during aging are one of the leading causes of aging. While senolytics can improve aging in humans as well as mice by specifically eliminating senescent cells, the effect of the senolytics varies in different cell types, suggesting variations in senescence. Various factors can induce cellular senescence, and the rate of accumulation of senescent cells differ depending on the organ. In addition, since the heterogeneity is due to the spatiotemporal context of senescent cells, in vivo studies are needed to increase the understanding of senescent cells. Since current methods are often unable to distinguish senescent cells from other cells, efforts are being made to find markers commonly expressed in senescent cells using bulk RNA-sequencing. Moreover, single-cell RNA (scRNA) sequencing, which analyzes the transcripts of each cell, has been utilized to understand the in vivo characteristics of the rare senescent cells. Recently, transcriptomic cell atlases for each organ using this technology have been published in various species. Novel senescent cells that do not express previously established marker genes have been discovered in some organs. However, there is still insufficient information on senescent cells due to the limited throughput of the scRNA sequencing technology. Therefore, it is necessary to improve the throughput of the scRNA sequencing technology or develop a way to enrich the rare senescent cells. The in vivo senescent cell atlas that is established using rapidly developing single-cell technologies will contribute to the precise rejuvenation by specifically removing senescent cells in each tissue and individual.

Quercetin induces apoptosis and cell cycle arrest in triple-negative breast cancer cells through modulation of Foxo3a activity

  • Nguyen, Lich Thi;Lee, Yeon-Hee;Sharma, Ashish Ranjan;Park, Jong-Bong;Jagga, Supriya;Sharma, Garima;Lee, Sang-Soo;Nam, Ju-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권2호
    • /
    • pp.205-213
    • /
    • 2017
  • Quercetin, a plant-derived flavonoid found in fruits, vegetables and tea, has been known to possess bioactive properties such as anti-oxidant, anti-inflammatory and anti-cancer. In this study, anti-cancer effect of quercetin and its underlying mechanisms in triple-negative breast cancer cells was investigated. MTT assay showed that quercetin reduced breast cancer cell viability in a time and dose dependent manner. For this, quercetin not only increased cell apoptosis but also inhibited cell cycle progression. Moreover, quercetin increased FasL mRNA expression and p51, p21 and GADD45 signaling activities. We also observed that quercetin induced protein level, transcriptional activity and nuclear translocation of Foxo3a. Knockdown of Foxo3a caused significant reduction in the effect of quercetin on cell apoptosis and cell cycle arrest. In addition, treatment of JNK inhibitor (SP 600125) abolished quercetin-stimulated Foxo3a activity, suggesting JNK as a possible upstream signaling in regulation of Foxo3a activity. Knockdown of Foxo3a and inhibition of JNK activity reduced the signaling activities of p53, p21 and GADD45, triggered by quercetin. Taken together, our study suggests that quercetin induces apoptosis and cell cycle arrest via modification of Foxo3a signaling in triple-negative breast cancer cells.

노화의 기전과 예방 (Mechanism of aging and prevention)

  • 김재식
    • IMMUNE NETWORK
    • /
    • 제1권2호
    • /
    • pp.104-108
    • /
    • 2001
  • Aging is a senescence and defined as a normal physiologic and structural alterations in almost all organ systems with age. As Leonard Hayflick, one of the first gerontologists to propose a theory of biologic aging, indicated that a theory of aging or longevity satisfies the changes of above conditions to be universal, progressive, intrinsic and deleterious. Although a number of theories have been proposed, it is now clear that cell aging (cell senescence) is multifactorial. No single mechanism can account for the many varied manifestations of biological aging. Many theories have been proposed in attempt to understand and explain the process of aging. Aging is effected in individual by genetic factors, diet, social conditions, and the occurrence of age-related diseases as diabetes, hypertension, and arthritis. It involves an endogenous molecular program of cellular senescence as well as continuous exposure throughout life to adverse exogenous influences, leading to progressive infringement on the cell's survivability so called wear and tear. So we could say the basic mechanism of aging depends on the irreversible and universal processes at cellular and molecular level. The immediate cause of these changes is probably an interference in the function of cell's macromolecules-DNA, RNA, and cell proteins-and in the flow of information between these macromolecules. The crucial questions, unanswered at present, concerns what causes these changes in truth. Common theories of aging are able to classify as followings for the easy comprehension. 1. Biological, 1) molecular theories - a. error theory, b. programmed aging theory, c. somatic mutation theory, d. transcription theory, e. run-out-of program theory, 2) cellular theories - a. wear and tear theory, b. cross-link theory, c. clinker theory, d. free radical theory, e. waste product theory, 3) system level theory-a. immunologic/autoimmune theory, 4) others - a. telomere theory, b. rate of living theory, c. stress theory, etc. Prevention of aging is theoretically depending on the cause or theory of aging. However no single theory is available and no definite method of delaying the aging process is possible by this moment. The most popular action is anti-oxidant therapy using vitamin E and C, melatonin and DHEA, etc. Another proposal for the reverse of life-span is TCP-17 and IL-16 administration from the mouse bone marrow B cell line study for the immunoglobulin VDJ rearrangement with RAG-1 and RAG-2. Recently conclusional suggestion for the extending of maximum life-span thought to be the calory restriction.

  • PDF

토너입자형 디스플레이의 응답특성에 관한 연구 (A Study on Response Time Characteristics of Toner Particle Type Display)

  • 김인호;김영조
    • 한국전기전자재료학회논문지
    • /
    • 제22권1호
    • /
    • pp.93-97
    • /
    • 2009
  • We analyzed voltage characteristics of toner particle type display according to particle layers and cell gap between two electrodes and ascertained the aging effects by measuring the response time of particles with and without aging process. The threshold/driving/breakdown voltage is proportional to layers of toner particles and cell gap and the response time at driving voltage is faster than that of threshold and breakdown voltage because of different q/m of color and black particles. The analysis of response time is a method of estimation of optical characteristics, driving voltage and particle lumping and these results are promoted by aging process. We use the laser and photodiode to measure response time and optical properties. It has not been studied and reported to analyze the relationship of response time, threshold/driving/breakdown voltage, lumping phenomena, cell gap, and aging process for toner particle type display.

Aging of hair follicle stem cells and their niches

  • Hansaem Jang;Yemin Jo;Jung Hyun Lee;Sekyu Choi
    • BMB Reports
    • /
    • 제56권1호
    • /
    • pp.2-9
    • /
    • 2023
  • Hair follicles in the skin undergo cyclic rounds of regeneration, degeneration, and rest throughout life. Stem cells residing in hair follicles play a pivotal role in maintaining tissue homeostasis and hair growth cycles. Research on hair follicle aging and age-related hair loss has demonstrated that a decline in hair follicle stem cell (HFSC) activity with aging can decrease the regeneration capacity of hair follicles. This review summarizes our understanding of how age-associated HFSC intrinsic and extrinsic mechanisms can induce HFSC aging and hair loss. In addition, we discuss approaches developed to attenuate ageassociated changes in HFSCs and their niches, thereby promoting hair regrowth.

에이징 공정이 대전입자 운동에 미치는 영향 (Effects of Aging Process in Kinetic Movement of Charged Paticles)

  • 김인호;김영조
    • 한국산학기술학회논문지
    • /
    • 제10권6호
    • /
    • pp.1175-1179
    • /
    • 2009
  • 본 논문은 대전입자형 디스플레이의 입자층과 상판과 하판의 전극간격(cell gap)으로 전압특성을 분석하여 에이징 전압 인가 전, 후의 응답속도를 측정하였다. 입자층이 증가할수록 비례하여 문턱/구동/항복 전압이 증가하였고 응답속도는 켈러입자와 검정입자의 q/m값의 차이로 문턱/항복 전압보다 구동전압에서의 응답속도가 빠른 것을 확인하였다. 응답속도는 레이저와 포토다이오드를 이용하여 광학특성으로 측정하였고 입자의 뭉침현상은 aging공정으로 최소화 하였다. 아직까지 대전입자형 디스플레이의 응답속도와 문턱/구동/항복 전압 및 입자주입층, cell gap, aging공정에 관하여 보고된 바 없으며 이에 상관관계를 평가하고 영향을 분석하였다.

PV.1 induced by FGF-Xbra functions as a repressor of neurogenesis in Xenopus embryos

  • Yoon, Jaeho;Kim, Jung-Ho;Lee, Sung-Young;Kim, SungChan;Park, Jae-Bong;Lee, Jae-Yong;Kim, Jaebong
    • BMB Reports
    • /
    • 제47권12호
    • /
    • pp.673-678
    • /
    • 2014
  • During Xenopus early development, FGF signaling is involved in mesoderm formation and neurogenesis by modulating various signaling cascades. FGF-MAPK signaling induces Xbra expression, which maintains mesodermal fate through an autocatalytic-loop. Interestingly, previous reports have demonstrated that basic FGF (bFGF) treatment alone does not induce neurogenesis in ectodermal explants, even though FGF signaling inhibits BMP signaling via phosphorylation in Smad1 linker region. In addition, the overexpression of dominantnegative Xbra induces neurogenesis in ectodermal explants. However, the detailed mechanism underlying these phenomena has not yet been clarified. In this work, we showed that bFGF-Xbra signaling increased the PV.1 expression. DN-Xbra was found to decrease PV.1 expression, and the co-injection of PV.1 with DN-Xbra reduced neurogenesis in ectodermal explants. Furthermore, the knockdown of PV.1 induced neurogenesis in bFGF-treated ectodermal explants. Taken together, our results demonstrate that FGF-Xbra signaling induces PV.1 expression and that PV.1 functions as a neural repressor in the FGF-treated ectoderm.

세포 노화에 있어서 복제 세네센스 현상과 산화적 스트레스의 영향 (Replicative Senescence in Cellular Aging and Oxidative Stress)

  • 박영철
    • Toxicological Research
    • /
    • 제19권3호
    • /
    • pp.161-172
    • /
    • 2003
  • Explanted mammalian cells perform a limited number of cell division in vitro and than are arrested in a state known as replicative senescence. Such cells are irreversibly blocked, mostly in the G1 phase of cell cycle, and are no longer sensitive to growth factor stimulation. Thus replicative senescence is defined as a permanent and irreversible loss of replicative potential of cells. For this characteristic, replicative senescence seems to evolve to protect mammalian organism from cancer. However, senescence also contributes to aging. It seems to decrease with age of the cell donor and, as a form of cell senescence, is thought to underlie the aging process. Extensive evidence supports the idea that progressive telomere loss contributes to the phenomenon of cell senescence. Telomeres are repetitive structures of the sequence (TTAGGG)n at the ends of linear chromosomes. It has been shown that the average length of telomere repeats in human somatic cells decreases by 30∼200 bp with each cell division. It is generally believed that when telomeres reach a critical length, a signal is activated to initiate the senescent program. This has given rise to the hypothesis that telomeres act as mitotic clocks to regulate lifespan. One proposes that cumulative oxidative stress, mainly reactive oxygen species generated from mitochondria, may mainly cause telomere shortening, accelerating aging. Here, the biological importance and mechanism of replicative senescence were briefly reviewed. Also it was summarized that how oxidative stress affects replicative senescence and telomere shortening.

How Environmental Agents Influence the Aging Process

  • Karol, Meryl H.
    • Biomolecules & Therapeutics
    • /
    • 제17권2호
    • /
    • pp.113-124
    • /
    • 2009
  • Aging is a multifaceted biological process that affects all organs and organ systems of the body. This review provides an up-to-date analysis of this highly exciting, rapidly changing field of science. The aging process is largely under genetic control but is highly responsive to diverse environmental influences. The genes that control aging are those that are involved with cell maintenance, cell damage and repair. The environmental factors that accelerate aging are those that influence either damage of cellular macromolecules, or interfere with their repair. Prominent among these are chronic inflammation, chronic infection, some metallic chemicals, ultraviolet light, and others that heighten oxidative stress. Other environment factors slow the aging process. Included among these agents are resveratrol and vitamin D. In addition, dietary restriction and exercise have been found to extend human lifespan. The various mechanisms whereby all these agents exert their influence on aging include epigenetic modification, chromatin maintenance, protection of telomeres, and anti-oxidant defense, among others. The complex process of aging remains under continued, intense investigation.