Browse > Article
http://dx.doi.org/10.4062/biomolther.2009.17.2.113

How Environmental Agents Influence the Aging Process  

Karol, Meryl H. (Department of Environmental and Occupational Health, University of Pittsburgh)
Publication Information
Biomolecules & Therapeutics / v.17, no.2, 2009 , pp. 113-124 More about this Journal
Abstract
Aging is a multifaceted biological process that affects all organs and organ systems of the body. This review provides an up-to-date analysis of this highly exciting, rapidly changing field of science. The aging process is largely under genetic control but is highly responsive to diverse environmental influences. The genes that control aging are those that are involved with cell maintenance, cell damage and repair. The environmental factors that accelerate aging are those that influence either damage of cellular macromolecules, or interfere with their repair. Prominent among these are chronic inflammation, chronic infection, some metallic chemicals, ultraviolet light, and others that heighten oxidative stress. Other environment factors slow the aging process. Included among these agents are resveratrol and vitamin D. In addition, dietary restriction and exercise have been found to extend human lifespan. The various mechanisms whereby all these agents exert their influence on aging include epigenetic modification, chromatin maintenance, protection of telomeres, and anti-oxidant defense, among others. The complex process of aging remains under continued, intense investigation.
Keywords
Aging; Environment; Oxidative stress; Inflammation; Heavy metals; Resveratrol; Calorie restriction;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Fitzpatrick, A. L., Kronmal, R. A., Gardner, J. P., Psaty, B. M., Jenny, N. S., Tracy, R. P., Walston, J., Kimura, M. and Aviv, A. (2007). Leukocyte telomere length and cardiovascular disease in the Cardiovascular Health Study. Am. J. Epidemiol. 165, 14-21   DOI   ScienceOn
2 Franceschi, C., Bonafe, M., Valensin, S., Olivieri, F., De Luca, M., Ottaviani, E. and De Benedictis, G. (2000). Inflammaging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 908, 244-254
3 Mele, J., Van Remmen, H., Vijg, J. and Richardson, A. (2006). Characterization of transgenic mice that overexpress both copper zinc superoxide dismutase and catalase. Antioxid. Redox. Signal. 8, 628-638   DOI   ScienceOn
4 Pamplona, R. (2008). Membrane phospholipids, lipo-oxidative damage and molecular integrity: a causal role in aging and longevity. Biochim. Biophys. Acta 1777, 1249-1262   DOI   ScienceOn
5 Sansoni, P., Vescovini, R., Fagnoni, F., Biasini C., Zanni, F., Zanlari, L., Telera, A., Lucchini, G., Passeri, G., Monti, D., Franceschi, C. and Passeri, M. (2008). The immune system in extreme longevity. Exp. Gerontol. 43, 61-65   DOI   ScienceOn
6 Kim, S. K. (2007). Common aging pathways in worms, flies, mice and humans. J. Exper. Biol. 210, 1607-1612   DOI   ScienceOn
7 Ljubuncic, P. and Reznick, A. Z. (2009). The evolutionary theories of aging revisited-a mini-review. Gerontol. 55, 205-216   DOI   ScienceOn
8 Horne, B. D., May, H. T., Anderson, J. L., Kfoury, A. G., Bailey, B. M., McClure, B. S., Renlund, D. G., Lappe, D. L., Carlquist, J. F., Fisher, P. W., Pearson, R. R., Bair, T. L., Adams, T. D., Muhlestein, J. B. and Intermountain Heart Collaborative Study (2008). Usefulness of routine periodic fasting to lower risk of coronary artery disease in patients undergoing coronary angiography. Amer. J. Cardiol. 102, 814-819   DOI   ScienceOn
9 Varady, K. A., Roohk, D. J., McEvoy-Hein, B. K., Gaylinn, B. D., Thorner, M. O. and Hellerstein, M. K. (2008). Modified alternate-day fasting regimens reduce cell proliferation rates to a similar extent as daily calorie restriction in mice. FASEB J. 22, 2090-2096   DOI   ScienceOn
10 Witte, A. V., Fobker, M., Gellner, R., Knect, S. and Floel, A. (2009). Caloric restriction improves memory in elderly humans. Proc. Natl. Acad. Sci. USA. 106, 1255-1260   DOI   ScienceOn
11 Cappola, A. R., Xue, Q. L., Ferrucci, L., Guralnik, J. M., Volpato, S. and Fried, L. P. (2003) Insulin-like growth factor I and interleukin-6 contribute synergistically to disability and mortality in older women. J. Clin. Endocrinol. Metab. 88, 2019-2025   DOI
12 Campisi, J. and Vijg, J. (2009). Does damage to DNA and other macromolecules play a role in aging? If so, how? J. Gerontol. A Biol. Sci. Med. Sci. 64A, 175-178   DOI   ScienceOn
13 Adler, A. S., Kawahara, T. L., Segal, E. and Chang, H. Y. (2008). Reversal of aging by NFkB blockade. Cell Cycle 7, 556-559   DOI
14 Ayrun, N., Xiaobin, L., Surdulescu. G. L., Swaminathan, R., Spector, T. D. and Aviv, A. (2007). Higher serum vitamin D concentrations are associated with longer leukocyte telomere length in women. Am. J. Clin. Nutr. 86, 1420-1425   DOI
15 Balaban, R. S., Nemoto, S. and Finkel, T. (2005). Mitochondria, oxidants, and aging. Cell 120, 483-495   DOI   ScienceOn
16 Blackburn, E. H. and Gall, J. (1978). A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J. Mol. Biol. 120, 33-53   DOI
17 Car, J. and Sheikh, A. (2004). Fasting and asthma: an opportunity for building patient-doctor partnership. Prim. Care Respir. J. 13, 133-135   DOI   ScienceOn
18 Epel, E. S., Blackburn, E. H., Lin, J., Dhabhar, F. S., Adler, N. E., Morrow, J. D. and Cawthon, R. M. (2004). Accelerated telomere shortening in response to life stress. Proc. Natl. Acad. Sci., USA 101, 17312-17315   DOI   ScienceOn
19 Carrero, J. J., Stenvinkel, P., Fellstrom, B. Qureshi, A. R., Lamb, K., Heimburger, O., Barany, P., Radhakrishnan, K., Lindholm, B., Soveri, I., Nordfors, L. and Shiels, P. G. (2008). Telomere attrition is associated with inflammation, low fetuin-A levels and high mortality in prevalent haemodialysis patients. J. Intern. Med. 263, 302-312   DOI   ScienceOn
20 Demissie, S., Levy, D., Benjamin, E. J., Cupples, L. A., Gardner, J. P., Herbert, A., Kimura, M., Larson, M. G., Meigs, J. B., Keaney, J. F. and Aviv, A. (2006). Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell 5, 325-330   DOI   ScienceOn
21 Farzaneh-Far, R., Cawthon, R. M., Na, B., Browner, W. S., Schiller, N. B. and Whooley, M. A. (2008). Prognostic value of leukocyte telomere length in patients with stable coronary artery disease: data from the Heart and Soul Study. Arterioscler. Thromb. Vasc. Biol. 28, 1379-1384   DOI   ScienceOn
22 Finkel, T. and Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247   DOI   ScienceOn
23 Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., Heine-Suñer, D., Cigudosa, J. C., Urioste, M., Benitez, J., Boix-Chornet, M., Sanchez-Aguilera, A., Ling, C., Carlsson, E., Poulsen, P., Vaag, A., Stephan, Z., Spector, T. D., Wu, Y. Z., Plass, C. and Esteller, M. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. USA 102, 10604-10609   DOI   ScienceOn
24 Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298-300   DOI   ScienceOn
25 Gan, L. and Mucke, L. (2008). Paths of convergence: Sirtuins in aging and neurodegeneration. Neuron 58, 10-14   DOI   ScienceOn
26 Giunta, B., Fernandez, F., Nikolic, W. V., Obregon, D., Rrapo, E., Town, T. and Tan, J. (2008). Inflammaging as a prodrome to Alzheimer's disease. J. Neuroinflam. 5, 1742-1756
27 Halaschek-Wiener, J., Vulto, I., Fornika, D., Collins, J., Connors, J. M., Le, N. D., Lansdorp, P. M. and Brooks-Wilson A. (2008). Reduced telomere length variation in healthy oldest old. Mech. Aging and Dev. 129, 638-641   DOI   ScienceOn
28 Kawahara, T. L. A., Michishita, E., Adler, A. S., Damian, M., Berber, E., Lin, M., McCord, R. A., Ongaigui, K. C. L., Boxer, L. D., Chang, H. Y. and Chua, K. F. (2008). SIRT6 links histone H3 lysine 9 deacetylation to NF-$\kappa$B-dependent gene expression and organismal life span. Cell 136, 62-74   DOI   ScienceOn
29 Kirkwood, T. B. L. (2005). Understanding the odd science of aging. Cell 120, 437-447   DOI   ScienceOn
30 Kirkwood, T. B. L. (2008). A systematic look at an old problem. Nature 451, 644-647   DOI   ScienceOn
31 Harshman, L. G. and Haberer, B. A. (2000). Oxidative stress resistance: a robust correlated response to selection in extended longevity lines of Drosophila melanogaster. J. Gerontol. A 55, B415-B417   DOI
32 Horton, Jr. W. E., Bennion, P. and Yang, L. (2006). Cellular, molecular, and matrix changes in cartilage during aging and osteoarthritis. J. Musculoskelet. Neuronal Interact. 6, 379-381
33 Kirkwood, T. B. L. and Holliday, R. (1979). The evolution of ageing and longevity. Proc. R. Soc. Lond. B Biol. Sci. 205, 531-546   DOI
34 Joeng, K. S., Song, E. J., Lee, K. J. and Lee, J. (2004). Long lifespan in worms with long telomeric DNA. Nature Genetics 36, 607-611   DOI   ScienceOn
35 Joyner, M. J. (2008). Viewpoint: not so fast: Intrinsic heart rate vs. $\beta$-adrenergic responsiveness in the aging human heart. J. Appl. Physiol. 105, 3-4   DOI   ScienceOn
36 Monnet-Tschud, F., Zurich, M. G., Boschat, C., Corbaz, A. and Honegger, P. (2006). Involvement of environmental mercury and lead in the etiology of neurodegenerative diseases. Rev. Environ. Health 21, 105-117
37 Kriete, A. and Mayo, K. L. (2009). Atypical pathways of NF kappaB activation and aging. Exp. Gerontol. 44, 250-255   DOI   ScienceOn
38 Lee, J. H., O'Keefe, J. H., Bell, D., Hensrud, D. D. and Holick, M. F. (2008). Vitamin D deficiency: An important, common, and easily treatable cardiovascular risk factor? J. Am. Coll. Cardiol. 52, 1949-1956   DOI   ScienceOn
39 Lips, P. (2006). Vitamin D physiology. Prog. Biophys. Mol. Biol. 92, 4-8   DOI   ScienceOn
40 Llewellyn, D. J., Langa, K. and Lang, I. (2009). Serum 25-hydroxyvitamin D concentration and cognitive impairment. J. Geriatr. Psychiatry. Neurol. (online)
41 Medawar, P. B. (1952). An Unsolved Problem of Biology. London, H.K. Lewis
42 Perez, V. I., Van Remmen, H., Bokov, A., Epstein, C. J., Vijg, J. and Richardson, A. (2009). The over-expression of major antioxidant enzymes does not extend the lifespan of mice. Aging Cell 8, 73-75   DOI   ScienceOn
43 Parrinello, S., Coppe, J. P., Krtolica, A. and Campisi, J. (2005). Stromal-epithelial interactions in aging and cancer: senescent fibroblasts can alter epithelial cell differentiation. J. Cell Sci. 118, 485-496   DOI   ScienceOn
44 Perez-Rivero, G., Ruiz-Torres, M. P., Díez-Marques, M. L., Canela, A., Lopez-Novoa, J. M., Rodriguez-Puyol, M., Blasco, M. A. and Rodriguez-Puyol, D. (2008). Telomerase deficiency promotes oxidative stress by reducing catalase activity. Free Radic. Biol. Med. 45, 1243-1251   DOI   ScienceOn
45 North, B. and Verdin, E. (2004). Sirtuins: Sir2-related NADdependent protein deacetylases. Genome Biol. 5, 224-235   DOI
46 Ornish, D., Lin, J., Daubenmier, J., Weidner, G., Epel, E., Kemp, C., Jesus, M., Magbanua, M., Marlin, R., Yglecias, L., Carroll, P. R. and Blackburn, E. H. (2008). Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet 9, 1048-1057   DOI   ScienceOn
47 Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398-411   DOI   ScienceOn
48 Richards, J. B., Valdes, A. M., Gardner, J. P., Paximadas, D., Kimura, M., Nessa, A., Lu, X., Surdulescu, G. L., Swaminathan, R., Spector, T. D. and Aviv, A. (2007). Higher serum vitamin D concentrations are associated with longer leukocyte telomere length in women. Am. J. Clin. Nutr. 86, 1420-1425   DOI
49 Sinclair, D. A. (2005). Toward a unified theory of caloric restriction and longevity regulation. Mech. Ageing Dev. 126, 987-1002   DOI   ScienceOn
50 Schriner, S. E., Linford, N. J., Martin, G. M., Treuting, P., Ogburn, C. E., Emond, M., Coskun, P. E., Ladiges, W., Wolf, N., Van Remmen, H., Wallace, D. C. and Rabinovitch, P. S. (2005). Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909-1911   DOI   ScienceOn
51 Steinbrenner, H. and Sies H. (2009). Protection against reactive oxygen species by selenoproteins. Biochim. Biophys. Acta. Mar 5 (In press)   DOI   ScienceOn
52 Vijg, J., Maslov, A.Y. and Suh, Y. (2008). Aging: a sirtuins shake-up? Cell 135, 797-798   DOI   ScienceOn
53 Warren, L. A. and Rossi, D. J. (2009). Stem cells and aging in the hematopoietic system. Mech. Aging Dev. 130, 46-53   DOI   ScienceOn
54 Farooqui, T. and Farooqui, A. A. (2009). Aging: an important factor for the pathogenesis of neurodegenerative diseases. Mech. Ageing Dev. 130, 203-215   DOI   ScienceOn
55 Brys, K., Vanfleteren, J. R. and Braeckman, B. P. (2007). Testing the rate-of-living/oxidative damage theory of aging in the nematode model Caenorhabditis elegans. Exper. Gerontol. 42, 845-851   DOI   ScienceOn
56 De Meyer, T., Rietzschel, E. R., De Buyzere, M. L., Van Criekinge, W. and Bekaert, S. (2008). Studying telomeres in a longitudinal population based study. Front. Biosci. 13, 2960-2970   DOI