• Title/Summary/Keyword: Aggregate Distribution

Search Result 306, Processing Time 0.022 seconds

The Evaluation Model of Aggregate Distribution for Lightweight Concrete Using Image Analysis Method (이미지 분석을 이용한 경량골재 콘크리트의 골재분포 판정기법 개발)

  • Ji, Suk-Won
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.10
    • /
    • pp.11-18
    • /
    • 2018
  • In this study, the cross-sectional image has been acquired to evaluate the aggregate distribution affecting quality of lightweight aggregate concrete, and through the binarization method, the study is to calculate the aggregate area of upper and lower sections to develop the method to assess the aggregate distribution of concrete. The acquisition of cross-section image of concrete for the above was available from the cross-sectional photography of cleavage tension of a normal test specimen, and an easily accessible and convenient image analysis software was used for image analysis. As a result, through such image analyses, the proportion of aggregate distribution of upper and lower sections of the test specien could be calculated, and the proportion of aggregate area U/L value of the upper and lower regions of concrete cross-section was calculated, revealing that it could be used as the comprehensive index of aggregate distribution. Moreover, through such method, relatively easy image acquisition methods and analytic methods have been proposed, and this indicated that the development of modeling to assess aggregate distribution quantitatively is available. Based on these methods, it is expected that the extraction of fundamental data to reconsider the connectivity with processes in concrete will be available through quality assessment of quantitative concrete.

Soil Aggregate Distribution in Reclaimed Tidelands and Tidelands of Southwest Coastal Area of Korea (우리나라 서남해안 간척지 및 간석지 토양의 입단분포)

  • Son, Jae-Gwon;Choi, Jin-Kyu;Hwang, Seon-Ah;Park, Bong-Ju;Cho, Jae-Young
    • Journal of Korean Society of Rural Planning
    • /
    • v.11 no.4 s.29
    • /
    • pp.93-98
    • /
    • 2005
  • A aggregate size distribution of soils is an important in successful crop production in reclaimed tidelands. The aggregate size distribution for this study were determined of 0.1mm, 0.25mm, 0.5mm, 1.0mm, and 2.0mm by wet sieving method. Agricultural activity, period of reclamation showed significant effects on aggregate size distribution in reclaimed tidelands. Aggregate MWD was greater in SS and KH(above 1.0m) than in YSG, GHD, SMG, and DH(below 0.5mm) reclaimed tidelands and tidelands. The percentage of aggregates less than < 2mm for SMG, GHD, and SM reclaimed tidelands and tidelands were ranged 8.9%, 36.7%, and 38.0%, respectively. The percentage of > 0.1mm aggregates for SMG, GHD, and SM reclaimed tidelands were ranged 9.0%, 26.0%, and 48.9%, respectively. Results indicated that aggregate size distribution of reclaimed tidelands and tidelands under various agricultural systems vary with reclamation period and soil type.

Development of Aggregate Recognition Algorithm for Analysis of Aggregate Size and Distribution Attributes (골재 크기와 분포 특성을 분석하기 위한 골재 인식 알고리즘 개발)

  • Seo, Myoung Kook;Lee, Ho Yeon
    • Journal of Drive and Control
    • /
    • v.19 no.3
    • /
    • pp.16-22
    • /
    • 2022
  • Crushers are equipment that crush natural stones, to produce aggregates used at construction sites. As the crusher proceeds, the inner liner becomes worn, causing the size of the aggregate produced to gradually increase. The vision sensor-based aggregate analysis system analyzes the size and distribution of aggregates in production, in real time through image analysis. This study developed an algorithm that can segmentate aggregates in images in real time. using image preprocessing technology combining various filters and morphology techniques, and aggregate region characteristics such as convex hull and concave hull. We applied the developed algorithm to fine aggregate, intermediate aggregate, and thick aggregate images to verify their performance.

Influence of Kind of Fine Aggregate on Fundamental Properties of Concrete (잔골재의 종류가 콘크리트의 기초적 특성에 미치는 영향)

  • Heo, Young-Sun;Han, Chang-Pyung;Han, Min-Cheol;Kwon, Oh-Hyun;Choi, Young-Wha;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.153-156
    • /
    • 2006
  • This study investigated influence of kind of fine aggregate on fundamental properties of concrete. For the properties of fluidity with various type of fine aggregate, lime stone crushed fine aggregate(Ls) exhibited favorable result, due to grain shape and particle distribution, and next was granite crushed fine aggregate(Gs), natural fine aggregate(Ns). Ns had the highest value of air content while Ls had the lowest, due to the effective filling performance by continuos particle distribution. Ls, Ns, Gs in an order had higher bleeding capacity and faster setting time. However, compressive and tensile strength value exhibited similar tendency, regardless of aggregate type.

  • PDF

Soil Aggregate Distribution in Reclaimed Tidelands and Tidelands of Southwest Coastal Area of Korea (우리나라 서남해안 간척지 및 간석지 토양의 입단분포)

  • Son, Jae-Gwon;Koo, Ja-Woong;Choi, Jin-Kyu;Cho, Jae-Young;Song, Jae-Do;Kim, Young-Ju
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.219-224
    • /
    • 2005
  • A aggregate size distribution is an important in successful crop production in reclaimed tidelands. The aggregate size distribution for this study were determined of 0.1mm, 0.5mm, 1.0mm, and 2.0mm by wet sieving method. Agricultural activity, period of reclamation showed significant effects on aggregate size distribution in reclaimed tidelands. The percentage of <2mm aggregates for SMG, GHD, and SM reclaimed tidelands were ranged 8.9, 36.7, and 38.0%, respectively. The percentage of >0.1mm aggregates for SMG, GHD, and SM reclaimed tidelands were ranged 9.0, 26.0, and 48.9%, respectively.

  • PDF

GIS-based Network Analysis for the Understanding of Aggregate Resources Supply-demand and Distribution in 2018 (GIS 네트워크 분석을 이용한 2018년 골재의 수요-공급과 유통 해석)

  • Lee, Jin-Young;Hong, Sei Sun
    • Economic and Environmental Geology
    • /
    • v.54 no.5
    • /
    • pp.515-533
    • /
    • 2021
  • Based on the supply location, demand location, and transportation network, aggregate supply-demand characteristics and aggregate distribution status were analyzed from the results of the closest distance, service areas, and location-allocation scenarios using GIS network analysis. As a result, it was found that the average transport distance of aggregates from the supplier was 6 km on average, the average range of 7 km for sand, and 10 km for gravel was found to reach the destination. In particular, the simulated service area covers about 92% in Seoul-Gyeonggi Province, 85% in Busan-Ulsan-Gyeongnam Province, and more than 90% in Daejeon-Sejong-Chungnam Province. These results have a significant implication in quantitatively interpreting primary data on aggregate supply-demand. Furthermore, these results suggest the possibility of a wide-area quantitative analysis of aggregate supply regions necessary for establishing a basic aggregate plan. The results also evaluated by the site-allocation scenario show that aggregate supply may be possible through companies less than 200 with large-amounts quarries, which is the 700 companies currently supplying small amounts of aggregates on the country. Therefore, in terms of distribution of aggregates, a policy approach is needed to form an appropriate market for regions with high and low density of aggregate supply services, and the necessity of regional distribution and re-evaluation is suggested through an aggregate supply analysis demand across the country. Furthermore, in analyzing the supply-demand network for the aggregate market, additional research is needed to establish long-term policies for the aggregate industry and related industries.

Distribution Characteristics of Quaternary Geology and Aggregate Resources in Geumsan-gun, Chungcheongnam-do (충청남도 금산군 일대 제4기 지질 및 골재자원 분포 특성)

  • Kim, Jin Cheul;Kim, Ju Yong;Lee, Jin-Young
    • Economic and Environmental Geology
    • /
    • v.54 no.5
    • /
    • pp.595-603
    • /
    • 2021
  • Sand layer distribution, which is the main target of river and land aggregate resources, mainly belongs to alluvial and river sedimentary environments among the Quaternary sedimentary environments. The distribution of aggregate resources in the area of Geumsan-gun, Chungcheongnam-do is characteristically developed around a sedimentation environment in which intrusive meandering river dominate. Although the area around Bonhwangcheon Stream and the area near the confluence of small streams are small, the river floodplain develops and corresponds to the aggregate distribution area. The sedimentary layer formed in the sedimentary environment such as colluvial deposits or alluvial fan deposits has a relatively low distribution rate of aggregate resources. The vertical distribution of the Quaternary sedimentary layers in the Geumsan-gun region ranges from about 5 to 12 m and has an average Quaternary sedimentary thickness of 8 m. The aggregate-bearing section has an average thickness of 3.6 m, and the average grain size is about 21% clay-silt, 67% sand, and 12% gravel. The main characteristics of the aggregate-bearing section are that coarse-grained sand predominates, and gravel is sub-angular or sub-rounded, and the sorting is generally poor and has a massive form of deposits, and the soil colour ranges from dark grey to yellowish-brown. In Geumsan-gun, the most likely distribution area for aggregate development is the alluvial sedimentary and river sedimentary layers distributed along the current and former riverbeds of the main Geumgang River, Bonhwangcheon and small River tributaries.

Fractal equations to represent optimized grain size distributions used for concrete mix design

  • Sebsadji, Soumia K.;Chouicha, Kaddour
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.505-513
    • /
    • 2020
  • Grading of aggregate influences significantly almost all of the concrete performances. The purpose of this paper is to propose practicable equations that express the optimized total aggregate gradation, by weight or by number of particles in a concrete mix. The principle is based on the fractal feature of the grading of combined aggregate in a solid skeleton of concrete. Therefore, equations are derived based on the so-called fractal dimension of the grain size distribution of aggregates. Obtained model was then applied in such a way a correlation between some properties of the dry concrete mix and the fractal dimension of the aggregate gradation has been built. This demonstrates that the parameter fractal dimension is an efficacious tool to establish a unified model to study the solid phase of concrete in order to design aggregate gradation to meet certain requirements or even to predict some characteristics of the dry concrete mixture.

Influence of Fine Aggregate Kinds on Fundamental Properties of Cement Mortar (잔골재 종류변화가 시멘트 모르터의 기초적 특성에 미치는 영향)

  • Kim, Seong-Hwan;Pei, Chang-Chun;Song, Seung-Heon;Cha, Cheon-Soo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.85-88
    • /
    • 2006
  • This study investigated influence of fine aggregate types on fundamental properties of cement mortar. Test showed that concrete using lime stone crushed fine aggregate(L) exhibited the most favorable fluidity due to grain shape and particle distribution, and next was blending aggregate miting L and G, blending aggregate mixing L and N, granite crushed fine aggregate(G), natural fine aggregate(N) in an order. Concrete using N had the highest air content and L was the smallest value because of the effective filling performance by continuos particle distribution. Compressive, tensile and flexural strength of all concrete using L had the highest value due to the smallest value of air content. It is also found that concrete using L resulted in decrease of drying shrinkage length change ratio.

  • PDF

Theoretical prediction on thickness distribution of cement paste among neighboring aggregates in concrete

  • Chen, Huisu;Sluys, Lambertus Johannes;Stroeven, Piet;Sun, Wei
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.163-176
    • /
    • 2011
  • By virtue of chord-length density function from the field of statistical physics, this paper introduced a quantitative approach to estimate the distribution of cement paste thickness between aggregates in concrete. Dynamics mixing method based on molecular dynamics was employed to generate one model structure, then image analysis algorithm was used to obtain the distribution of thickness of cement paste in model structure for the purpose of verification. By comparison of probability density curves and cumulative probability curves of the cement paste thickness among neighboring aggregates, it is found that the theoretical results are consistent with the simulation. Furthermore, for the model mortar and concrete mixtures with practical volume fraction of Fuller-type aggregate, this analytical formula was employed to predict the influence of aggregate volume fraction and aggregate fineness. And evolution of its mean values were also investigated with the variation of volume fraction of aggregate as well as the fineness of aggregates in model mortars and concretes.