• Title/Summary/Keyword: Aggregate

Search Result 4,242, Processing Time 0.027 seconds

A Study on the Recycled Fine Aggregate and Properties of Mortar by the Acid Treatment (산처리에 의한 순환잔골재의 품질과 모르타르의 특성에 관한 연구)

  • Kim Ha-Suk;Sun Joung-Soo;Kawg Eun-Gu;Han Ki-Suk;Lee Do-Heune;Kim Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.81-84
    • /
    • 2006
  • This study is intended for how to utilize the recycled fine aggregate which is produced by concrete wastes. It analyzes the quality of the fine aggregate which is reproduced through the acid treatment process, and comprehends the characteristics of mortar using the recycled fine aggregate to review whether it can be put to practical use for concrete. The conclusion of the study are as follows 1. The recycled fine aggregate through the acid treat shows the low rate of absorption and high density. 2. Compared to the mortar made from acid liquid precipitated recycled fine aggregate, using nature water precipitated one reduces the flow. 3. The compressive strength of mortar using recycled fine aggregate tends to be reduced according to the kind of precipitated water. Based on the above results, the recycled fine aggregate through the acid treatment process satisfies the quality standards of the first-grade recycled fine aggregate of KS F 2573 (recycled fine aggregate for concrete) but it is concluded that the recycled fine aggregate through the acid treatment process can not used as fine aggregate used concrete because it has destructive characteristics when the mortar is produced

  • PDF

Fundamental Study on the Application of a Surface Layer using Cold Central-Plant Recycling (플랜트 생산 재활용 상온 혼합물의 도로 표층 적용성에 관한 기초연구)

  • Choi, Jun Seong
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.69-76
    • /
    • 2018
  • PURPOSES : This study determined the optimal usage rate of RAP (reclaimed asphalt pavement) using cold central-plant recycling (CCPR) on a road-surface layer. In addition, a mixture-aggregate gradation design and a curing method based on the proposed rate for the surface-layer mix design were proposed. METHODS : First, current research trends were investigated by analyzing the optimum moisture content, mix design, and quality standards for surface layers in Korea and abroad. To analyze the aggregate characteristics of the RAP, its aggregate-size characteristics were analyzed through the combustion asphalt content test and the aggregate sieve analysis test. Moreover, aggregate-segregation experiments were performed to examine the possibility of RAP aggregate segregation from field compaction and vehicle traffic. After confirming the RAP quality standards, coarse aggregate and fine aggregate, aggregate-gradation design and quality tests were conducted for mixtures with 40% and 50% RAP usage. The optimum moisture content of the surface-layer mixture containing RAP was tested, as was the evapotranspiration effect on the surface-layer mixture of the optimum moisture content. RESULTS : After analyzing the RAP recycled aggregate size and extraction aggregate size, 13-8mm aggregate was found to be mostly 8mm aggregate after combustion. After using surface-chipping and mixing methods to examine the possibility of RAP aggregate segregation, it was found that the mixing method contributed very little for 3.32%, and because the surface-chipping method applied compaction energy directly as the maximum assumption the separation ratio was 15.46%. However, the composite aggregate gradation did not change. Using a 40% RAP aggregate rate on the surface-layer mixture for cold central-plant recycling satisfied the Abroad quality standard. The optimum moisture content of the surface-layer mixture was found to be 7.9% using the modified Marshall compaction test. It was found that the mixture was over 90% cured after curing at $60^{\circ}C$ for two days. CONCLUSIONS : To use the cold central-plant recycling mixture on a road-surface layer, a mixture-aggregate gradation design was proposed as the RAP recycled aggregate size without considering aggregate segregation, and the RAP optimal usage rate was 40%. In addition, the modified Marshall compaction test was used to determine the optimum moisture content as a mix-design parameter, and the curing method was adapted using the method recommended by Asphalt Recycling & Reclaiming Association (ARRA).

Influence of the Fine and Coarse Aggregate on the Fluidity of High Flowing Concrete (고유동콘크리트의 유동특성에 미치는 잔골재 및 굵은골재의 영향)

  • 김규용;이정율;박선규;정하선;이석홍;손영현;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.301-306
    • /
    • 1998
  • Aggregate as the component of High Flowing Concrete has much influence on the properties of High Flowing Concrete according to the quality and condition because the aggregate occupy a lot of concrete volume. The shape and size of aggregate affect a lot spatial passibility and fillingability. The segregation is easy to occur when the rate of Fine aggregate is high so that Fluidity is much affected by aggregate factor. In this study, therefore, we try to understand the various fluidity according to the fine aggregate of standard grade rang, the size of Coarse aggregate and the rate of fine aggregate to confirm the manufacturing possibility of High Flowing Concrete by examination on the influence of fresh state of high flowing concrete such as flowability, reinforcement passibility, fillingability, segregation resistance.

  • PDF

Domestic Aggregate Quality Status and Mechanical Properties of Concrete According to Quality of Aggregate (국내 골재 품질 현황 및 골재등급에 따른 콘크리트의 역학적 특성에 관한 연구)

  • Min, Choong-Siek;Park, Jong-Ho;Jeong, Yong;Lee, Jae-Hyun;Kim, Yong-Ro;Kim, Hyo-Rak
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.207-208
    • /
    • 2012
  • This study is aimed to utilize for basic material of concrete quality management through evaluate properties of fresh and hardened concrete with the aggregate quality. As a result, fine aggregate's slump change of between one grade was 8~82% and in case of coarse aggregate, slump change of between one grade was 2~22% on same mixing condition. The unit water for same workability condition, unit water was increased 16kg/㎥ with decreasing of one grade for fine aggregate and unit water was increased 5kg/㎥ with decreasing of one grade for coarse aggregate.

  • PDF

The Effect on the Properties of Concrete by Fine Aggregate Fineness Modulus and Grain Shape of Coarse Aggregate (잔골재 조립율 및 굵은골재 입형이 콘크리트의 특성에 미치는 영향)

  • 정용욱;윤용호;이승한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.102-105
    • /
    • 2003
  • The purpose of this study is to examine the influence of the flowability and the compressive strength of concrete after the improving of grain shape of the coarse aggregate and fine aggregate fineness modulus. According to the experimental results, the coarse aggregate after improvement of grain shape it lead to be down by 6% fine aggregate ratio, from 47% to 41%. The 0.5% increase of fine aggregate fineness modulus lead to 3% increase of concrete slump, and 1% reduction of concrete air content. While compressive strength on fine aggregate fineness modulus, it was increased until fineness modulus 3.0, but after it reached by 3.5 it was decreased. The compressive strength of the coarse aggregate after improving the grain shape was decreased by 6% due to loss of the adhesion of cement paste.

  • PDF

Freezing and Thawing Properties of High Strength Concrete Using Recycled Coarse Aggregate (재생굵은골재를 사용한 고강도 콘크리트의 동결융해 특성)

  • Sung , Chan-Yong;Im , Sang-Hyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.2
    • /
    • pp.59-66
    • /
    • 2004
  • This study was performed to evaluate the freezing and thawing properties of the high strength concrete using recycled coarse aggregate. The recycled coarse aggregate replaced natural crushed aggregate by 0%, 25%, 50%, 75% and 100%. The compressive strength of the concrete using recycled coarse aggregate showed more than 300 kgf/$cm^2$ at the curing age 28 days. The mass loss ratio by freezing and thawing was less than 1% at all mix type. The relative dynamic modulus of elasticity was decreased with increasing the freezing and thawing cycles. Also, the durability factor by the freezing and thawing was decreased with increasing the content of recycled coarse aggregate. But, the recycled concrete except 100% recycled coarse aggregate showed 60 or more durability factor in the freezing and thawing 300 cycles. Accordingly, these recycled coarse aggregate can be used for high strength concrete.

A Fundamental Study on Supply Status and Use Plan of Fine Aggregates (잔골재의 수급현황 및 활용방안에 관한 기초적 연구)

  • Yu Myoung Youl;Lee Sea-Hyun;Lee Hyun-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.101-104
    • /
    • 2005
  • It analyzed the supply status of fine aggregate and find the point of issue related alternative fine aggregate through researches and interviews. The conclusions of the study are as follows. 1. Ready mixed concrete manufacture used crushed fine aggregate (15.5$\%$) and recycled fine aggregate (1.5$\%$) for alternatives aggregate than 1.3$\%$ in 1991. It is not allowed to use a recycled fine aggregate in ready mixed concrete, but they used it. 2. All alternative aggregate are satisfied the Korean Standard, But they showed low properties of mortar compared to when it replaced with natural fine aggregate. So, it is needed to make another special Korean Standard to use alternative aggregate in normal concrete by mixing method to recover the workability and compressive strength.

  • PDF

Various Aggregate Forms of Tryptophan Synthase α-Subunit (트립토판 합성효소 α 소단위체의 다양한 단백질 덩어리 형성)

  • Park, Myung Won;Lim, Woon Ki
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.319-323
    • /
    • 2013
  • Protein aggregation can cause diseases and hinder the production of useful recombinant proteins. The present study showed that at least three types of aggregates can be formed from tryptophan synthase ${\alpha}$-subunit (${\alpha}TS$) by varying conditions: (1) an opaque white precipitous aggregate, (2) a transparent gel-like precipitous aggregate, and (3) an unprecipitous aggregate. Macroscopically different aggregate types might suggest different mechanisms underlying aggregation processes.

Development of Aggregate Recognition Algorithm for Analysis of Aggregate Size and Distribution Attributes (골재 크기와 분포 특성을 분석하기 위한 골재 인식 알고리즘 개발)

  • Seo, Myoung Kook;Lee, Ho Yeon
    • Journal of Drive and Control
    • /
    • v.19 no.3
    • /
    • pp.16-22
    • /
    • 2022
  • Crushers are equipment that crush natural stones, to produce aggregates used at construction sites. As the crusher proceeds, the inner liner becomes worn, causing the size of the aggregate produced to gradually increase. The vision sensor-based aggregate analysis system analyzes the size and distribution of aggregates in production, in real time through image analysis. This study developed an algorithm that can segmentate aggregates in images in real time. using image preprocessing technology combining various filters and morphology techniques, and aggregate region characteristics such as convex hull and concave hull. We applied the developed algorithm to fine aggregate, intermediate aggregate, and thick aggregate images to verify their performance.

Feasibility Study on the Use of Dredged Soil from Sewage Pipes as a Concrete Material (하수차집관로 준설토양의 콘크리트골재 적용성 평가에 관한 연구)

  • Kim, Joon-Ha;Kim, Hyeong Wook;Kim, In-Sik;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.2
    • /
    • pp.10-16
    • /
    • 2017
  • Recently, the gap between demand and supply of natural aggregate has increased owing to the depletion of aggregate sources. Therefore, policy support is necessary for the stable supply of aggregate resources. Public and construction works experience problems when they do not receive a steady supply of aggregate. Further, instabilities in aggregate supply lead to increases in aggregate prices, and consequently construction costs. As a result, the likelihood of poor construction using low-grade aggregate increases. It is therefore crucial to put measures in place that deal with these issues. This study aims to reduce the load imposed by aggregate use on the environment by recycling soil dredged from sewage ducts to reduce the gap between supply and demand of fine aggregate. The dredged soil is assessed using an applicability test for quality characteristics and solidification with basic properties. This study aims to secure the safety of dredging soil and solidified objects through interior physical and chemical analyses and to utilize it as a base material for concrete solidification in the future.