• 제목/요약/키워드: Agglomerative

검색결과 68건 처리시간 0.029초

Application of Principal Component Analysis Prior to Cluster Analysis in the Concept of Informative Variables

  • Chae, Seong-San
    • Communications for Statistical Applications and Methods
    • /
    • 제10권3호
    • /
    • pp.1057-1068
    • /
    • 2003
  • Results of using principal component analysis prior to cluster analysis are compared with results from applying agglomerative clustering algorithm alone. The retrieval ability of the agglomerative clustering algorithm is improved by using principal components prior to cluster analysis in some situations. On the other hand, the loss in retrieval ability for the agglomerative clustering algorithms decreases, as the number of informative variables increases, where the informative variables are the variables that have distinct information(or, necessary information) compared to other variables.

An Agglomerative Hierarchical Variable-Clustering Method Based on a Correlation Matrix

  • Lee, Kwangjin
    • Communications for Statistical Applications and Methods
    • /
    • 제10권2호
    • /
    • pp.387-397
    • /
    • 2003
  • Generally, most of researches that need a variable-clustering process use an exploratory factor analysis technique or a divisive hierarchical variable-clustering method based on a correlation matrix. And some researchers apply a object-clustering method to a distance matrix transformed from a correlation matrix, though this approach is known to be improper. On this paper an agglomerative hierarchical variable-clustering method based on a correlation matrix itself is suggested. It is derived from a geometric concept by using variate-spaces and a characterizing variate.

SDN-Based Hierarchical Agglomerative Clustering Algorithm for Interference Mitigation in Ultra-Dense Small Cell Networks

  • Yang, Guang;Cao, Yewen;Esmailpour, Amir;Wang, Deqiang
    • ETRI Journal
    • /
    • 제40권2호
    • /
    • pp.227-236
    • /
    • 2018
  • Ultra-dense small cell networks (UD-SCNs) have been identified as a promising scheme for next-generation wireless networks capable of meeting the ever-increasing demand for higher transmission rates and better quality of service. However, UD-SCNs will inevitably suffer from severe interference among the small cell base stations, which will lower their spectral efficiency. In this paper, we propose a software-defined networking (SDN)-based hierarchical agglomerative clustering (SDN-HAC) framework, which leverages SDN to centrally control all sub-channels in the network, and decides on cluster merging using a similarity criterion based on a suitability function. We evaluate the proposed algorithm through simulation. The obtained results show that the proposed algorithm performs well and improves system payoff by 18.19% and 436.34% when compared with the traditional network architecture algorithms and non-cooperative scenarios, respectively.

An Incremental Similarity Computation Method in Agglomerative Hierarchical Clustering

  • Jung, Sung-young;Kim, Taek-soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제11권7호
    • /
    • pp.579-583
    • /
    • 2001
  • In the area of data clustering in high dimensional space, one of the difficulties is the time-consuming process for computing vector similarities. It becomes worse in the case of the agglomerative algorithm with the group-average link and mean centroid method, because the cluster similarity must be recomputed whenever the cluster center moves after the merging step. As a solution of this problem, we present an incremental method of similarity computation, which substitutes the scalar calculation for the time-consuming calculation of vector similarity with several measures such as the squared distance, inner product, cosine, and minimum variance. Experimental results show that it makes clustering speed significantly fast for very high dimensional data.

  • PDF

EXTENDED ONLINE DIVISIVE AGGLOMERATIVE CLUSTERING

  • Musa, Ibrahim Musa Ishag;Lee, Dong-Gyu;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.406-409
    • /
    • 2008
  • Clustering data streams has an importance over many applications like sensor networks. Existing hierarchical methods follow a semi fuzzy clustering that yields duplicate clusters. In order to solve the problems, we propose an extended online divisive agglomerative clustering on data streams. It builds a tree-like top-down hierarchy of clusters that evolves with data streams using geometric time frame for snapshots. It is an enhancement of the Online Divisive Agglomerative Clustering (ODAC) with a pruning strategy to avoid duplicate clusters. Our main features are providing update time and memory space which is independent of the number of examples on data streams. It can be utilized for clustering sensor data and network monitoring as well as web click streams.

  • PDF

Interactive Region Segmentation Method Using Agglomerative Clustering

  • Park, Sanghyun
    • Journal of Advanced Information Technology and Convergence
    • /
    • 제8권2호
    • /
    • pp.89-99
    • /
    • 2018
  • Due to global warming, various natural disasters such as floods and droughts are increasing. If we can detect the possibility of natural disasters in advance, we can prevent massive damages caused by natural disasters. Recent advances in visual sensor technologies have enabled remote monitoring of a variety of natural environments, including lakes, rivers, and shores. In this paper, we propose a method to segment an image obtained from video sensor networks into regions in order to monitor the environment effectively. In the proposed method, we first partition the image into superpixels and model the connections between superpixels as a graph. Then, initial seeds for each region are set by using the prior information, and the initial seeds are expanded to form regions using agglomerative clustering. Experimental results show that the proposed method extracts the regions from natural environment images easily and accurately.

Color Image Segmentation Using Anisotropic Diffusion and Agglomerative Hierarchical Clustering (비등방형 확산과 계층적 클러스터링을 이용한 칼라 영상분할)

  • 김대희;안충현;호요성
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 2003년도 신호처리소사이어티 추계학술대회 논문집
    • /
    • pp.377-380
    • /
    • 2003
  • A new color image segmentation scheme is presented in this paper. The proposed algorithm consists of image simplification, region labeling and color clustering. The vector-valued diffusion process is performed in the perceptually uniform LUV color space. We present a discrete 3-D diffusion model for easy implementation. The statistical characteristics of each labeled region are employed to estimate the number of total clusters and agglomerative hierarchical clustering is performed with the estimated number of clusters. Since the proposed clustering algorithm counts each region as a unit, it does not generate oversegmentation along region boundaries.

  • PDF

The Experimental Study on the Relationship between Hierarchical Agglomerative Clustering and Compound Nouns Indexing (계층적 결합형 문서 클러스터링 시스템과 복합명사 색인방법과의 연관관계 연구)

  • Cho Hyun-Yang;Choi Sung-Pil
    • Journal of the Korean Society for Library and Information Science
    • /
    • 제38권4호
    • /
    • pp.179-192
    • /
    • 2004
  • In this paper, we present that the result of document clustering can change dramatically with respect to the different ways of indexing compound nouns. First of all, the automatic indexing engine specialized for Korean words analysis, which also serves as the backbone engine for automatic document clustering system, is introduced. Then, the details of hierarchical agglomerative clustering(HAC) method, one of the widely used clustering methodologies in these days, was illustrated. As the result of observing the experiments, carried out in the final part of this paper, it comes to the conclusion that the various modes of indexing compound nouns have an effect on the outcome of HAC.

Classification of basin characteristics related to inundation using clustering (군집분석을 이용한 침수관련 유역특성 분류)

  • Lee, Han Seung;Cho, Jae Woong;Kang, Ho seon;Hwang, Jeong Geun;Moon, Hae Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.96-96
    • /
    • 2020
  • In order to establish the risk criteria of inundation due to typhoons or heavy rainfall, research is underway to predict the limit rainfall using basin characteristics, limit rainfall and artificial intelligence algorithms. In order to improve the model performance in estimating the limit rainfall, the learning data are used after the pre-processing. When 50.0% of the entire data was removed as an outlier in the pre-processing process, it was confirmed that the accuracy is over 90%. However, the use rate of learning data is very low, so there is a limitation that various characteristics cannot be considered. Accordingly, in order to predict the limit rainfall reflecting various watershed characteristics by increasing the use rate of learning data, the watersheds with similar characteristics were clustered. The algorithms used for clustering are K-Means, Agglomerative, DBSCAN and Spectral Clustering. The k-Means, DBSCAN and Agglomerative clustering algorithms are clustered at the impervious area ratio, and the Spectral clustering algorithm is clustered in various forms depending on the parameters. If the results of the clustering algorithm are applied to the limit rainfall prediction algorithm, various watershed characteristics will be considered, and at the same time, the performance of predicting the limit rainfall will be improved.

  • PDF

Rheological characteristics of non-spherical graphite suspensions

  • Mustafa, Hiromoto Usui;Ishizuki, Masanari;Shinge, Ibuki;Suzuki, Hiroshi
    • Korea-Australia Rheology Journal
    • /
    • 제15권1호
    • /
    • pp.19-25
    • /
    • 2003
  • Since the microstructure of functional thin films depends on the dispersion characteristics of dense slurry, it is important to control the agglomerative nature of slurries under processing. The present authors have been discussing the model prediction of agglomerative nature and local rate of agglomeration in dense suspensions. The experiments have been peformed under shear flow using the nearly spherical and oblate type graphite particles. In this study, the experiment has been conducted using water and glycerol as dispersion media. Stress control type rheometer was used to measure the slurry rheology. Local agglomeration of graphite particles has been predicted by using Usui's model. The experimental results show that both the shape and slurry processing method affect on the local dispersion condition. The agglomeration formed by oblate type graphite particles seems to be more difficult to break up than that of spherical particles.