• 제목/요약/키워드: Age of Artificial Intelligence

검색결과 173건 처리시간 0.026초

Machine Learning Model to Predict Osteoporotic Spine with Hounsfield Units on Lumbar Computed Tomography

  • Nam, Kyoung Hyup;Seo, Il;Kim, Dong Hwan;Lee, Jae Il;Choi, Byung Kwan;Han, In Ho
    • Journal of Korean Neurosurgical Society
    • /
    • 제62권4호
    • /
    • pp.442-449
    • /
    • 2019
  • Objective : Bone mineral density (BMD) is an important consideration during fusion surgery. Although dual X-ray absorptiometry is considered as the gold standard for assessing BMD, quantitative computed tomography (QCT) provides more accurate data in spine osteoporosis. However, QCT has the disadvantage of additional radiation hazard and cost. The present study was to demonstrate the utility of artificial intelligence and machine learning algorithm for assessing osteoporosis using Hounsfield units (HU) of preoperative lumbar CT coupling with data of QCT. Methods : We reviewed 70 patients undergoing both QCT and conventional lumbar CT for spine surgery. The T-scores of 198 lumbar vertebra was assessed in QCT and the HU of vertebral body at the same level were measured in conventional CT by the picture archiving and communication system (PACS) system. A multiple regression algorithm was applied to predict the T-score using three independent variables (age, sex, and HU of vertebral body on conventional CT) coupling with T-score of QCT. Next, a logistic regression algorithm was applied to predict osteoporotic or non-osteoporotic vertebra. The Tensor flow and Python were used as the machine learning tools. The Tensor flow user interface developed in our institute was used for easy code generation. Results : The predictive model with multiple regression algorithm estimated similar T-scores with data of QCT. HU demonstrates the similar results as QCT without the discordance in only one non-osteoporotic vertebra that indicated osteoporosis. From the training set, the predictive model classified the lumbar vertebra into two groups (osteoporotic vs. non-osteoporotic spine) with 88.0% accuracy. In a test set of 40 vertebrae, classification accuracy was 92.5% when the learning rate was 0.0001 (precision, 0.939; recall, 0.969; F1 score, 0.954; area under the curve, 0.900). Conclusion : This study is a simple machine learning model applicable in the spine research field. The machine learning model can predict the T-score and osteoporotic vertebrae solely by measuring the HU of conventional CT, and this would help spine surgeons not to under-estimate the osteoporotic spine preoperatively. If applied to a bigger data set, we believe the predictive accuracy of our model will further increase. We propose that machine learning is an important modality of the medical research field.

만 5세 대상 놀이중심 인공지능 교육 프로그램 개발을 위한 유아교사의 인식과 요구분석 (The Perception and Needs Analysis of Early Childhood Teachers for Development of a Play-Based Artificial Intelligence Education Program for 5-Year-Olds)

  • 박지은;홍미선;조정원
    • 산업융합연구
    • /
    • 제20권5호
    • /
    • pp.39-59
    • /
    • 2022
  • 본 논문은 만 5세 대상 인공지능(AI) 교육 프로그램을 개발하기 위해 AI 교육에 대한 유아교사의 인식과 요구사항들을 분석하는데 목적을 두고 있다. 연구방법은 ADDIE 모형의 1단계인 분석단계를 중심으로 AI 교육의 교육적 요소를 추출하기 위해 설문조사 및 심층 인터뷰를 진행하였다. 연구결과는 첫째, 만 5세 대상 AI 교육은 놀이로서 자연스럽게 받아들일 수 있는 유아교육 내용과 AI를 융합한 교육과정을 설계해야 한다. 둘째, 교사의 성찰을 반영할 수 있는 AI 교육의 평가도구가 체계적으로 개발되어야 한다. 셋째, 놀이중심의 AI 교육환경 지원 및 유아교사 대상 교육지원이 필요하다. 마지막으로 비교과 교육과정의 AI 교육 등을 고려하여 지속해서 유아교육 현장에서 운영될 수 있도록 시스템을 구축해야 한다. 향후 만 5세 대상 놀이중심 AI 교육 프로그램을 개발하여 유아 대상의 AI 교육에 대한 인식을 확산하고 학습자의 연령별, 단계별 AI 교육 접근방안을 제시할 것을 기대한다.

가속도 데이터 기반 교량 안전 판단을 위한 Edge AI 모델 (Bridge Safety Determination Edge AI Model Based on Acceleration Data)

  • 박진효;홍용근;윤주상
    • 한국산업정보학회논문지
    • /
    • 제29권4호
    • /
    • pp.1-11
    • /
    • 2024
  • 교량은 노후화와 지진, 유지보수 미비, 기상환경 등의 외부 요인에 의해 균열과 손상이 발생한다. 노후화 교량이 늘어나고 있는 상황에서 유지보수 작업을 진행하지 않으면 안전성이 저하되어 구조적 결함과 붕괴 문제가 발생할 수 있다. 이러한 문제를 예방하고 유지보수 비용을 절감하기 위해 교량의 상태를 모니터링하고 신속하게 대응할 수 있는 시스템이 필요하다. 이를 위해 기존의 연구에서 센서 데이터를 이용해 균열 위치와 정도를 파악하는 인공지능 모델이 제안되었다. 하지만 기존 연구에서 모델의 성능을 파악할 때 실제 교량의 데이터를 사용하지 않고 시뮬레이션을 통해서 교량의 형상을 제작하여 데이터를 획득하여 학습에 사용하였기 때문에, 실제 교량의 환경을 반영하지 못하고 있다. 본 논문에서는 실제 현장에서 발생하는 교량의 가속도 데이터를 활용하여 인공지능 기반 교량의 이상을 감지하는 '교량 안전 판단 Edge AI 모델'을 제안한다. 이를 위해 가속도 데이터에서 유효 데이터를 추출하기 위한 필터링 규칙을 새롭게 정의하고 이를 적용하는 모델을 구성하였다. 또한 현장에서 수집된 데이터를 기반의 제안된 교량 안전 판단 Edge AI 모델의 성능을 평가하였다. 그 결과 F1-Score가 최대 0.9565로 실제 교량의 데이터를 이용해 안전성을 판단할 수 있음을 확인할 수 있었고, 실제 충격 데이터를 유사한 데이터 패턴을 생성하는 규칙일수록 좋은 성능의 결과가 나왔다는 것을 확인하였다.

빅 데이터!, 당신의 생각은 어떠하십니까? : 스포츠실무자의 주관성을 바탕으로 (Big Data! What do you think about that ? ; Using the Subjectivity of Sports Practitioner)

  • 최재석;이도희
    • 한국콘텐츠학회논문지
    • /
    • 제21권5호
    • /
    • pp.149-156
    • /
    • 2021
  • 본 연구는 4차 산업혁명시대를 맞이하여, '빅 데이터'라는 용어가 우리 일상에 활용 및 논의되면서, 과연 빅데이터에 대하여 어떻게 생각하고 있는가에 대한 질문에서 출발하였다. 분석을 위하여, 빅 데이터 관련 선행연구를 바탕으로 최종 30개의 Q표본을 선정하고, 응답자 23명을 확보하여 Q분석을 실시하여, 다음과 같은 결과를 도출하였다. 첫째, 각 유형별 설명력은 <유형 I>은 34.30%, <유형 II>는 8.03%, <유형III>은 7.21%, <유형IV>는 6.24%로 전체 55.69%의 설명력을 나타냈다. 둘째, <유형I>은 다양한 직업분포를 나타내고 있으며, '빅 데이터'에 대해서는 '디지털', '미래'. '통계분석', '인공지능' 등의 진술문을 강조하고 있어, 「디지털형」으로 명명하였다. <유형 II>는 '사회복지사'의 분포가 많고, '빅 데이터'는 '미래', '협업', '복지', '지역주민' 등을 강조하여, 「복지형」으로 명명하였다. <유형III>은 응답자의 직업분포가 고르게 나타났고, '융합', '디지털', '미래', '스포츠' 등의 진술문을 강조하고 있어, 「융합형」으로 명명하였다. <유형 IV>는 협회관계자, 스포츠강사 및 대학원생 응답자로, '인공지능', '뉴 패러다임', '네트워크', '스포츠' 등을 강조하고 있어, 「인공지능형」으로 명명하였다. 산업화, 정보화에 이어진 지식산업화 및 지식정보화시대에는 그 동안 쌓아온 수많은 데이터를 어떻게 잘 가공하여 활용할 것인가가 중요한 과제가 아닐 수 없다. 바로 지금은 스포츠에서도 그 동안 축적된 빅 데이터의 활용과 활성화 방안 모색이 이루어져야 할 것이다.

독일 고등학교 수학에서 행렬 교수·학습 내용 분석 (Analysis of teaching and learning contents of matrix in German high school mathematics)

  • 안은경;고호경
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제62권2호
    • /
    • pp.269-287
    • /
    • 2023
  • 행렬이론은 수학, 자연과학, 공학뿐 아니라 사회과학과 인공지능 분야에까지 다양하게 활용되고 있다. 중·고등학교 수학에서 행렬은 학습 부담 경감을 위해 2009 개정 수학과 교육과정에서 삭제되었다가 인공지능 시대를 맞이하여 2022 개정 교육과정에 재편성될 예정이다. 이에 다른 나라에서 다루고 있는 행렬 내용을 분석함으로써 행렬 지도를 위한 의미 있는 방향을 제시하고 교과서 구성을 위한 시사점을 도출할 필요성이 있다. 이를 위해 본고에서는 독일 수학과 표준교육과정과 독일 헤센주의 수학과 교육과정을 분석하고, 독일 수학 교과서의 행렬 단원의 내용 요소 및 전개 방식의 특징을 분석하였다. 분석 결과 독일 교과서는 선형연립방정식의 풀이를 위한 행렬, 일차변환을 설명하기 위한 행렬, 전환과정을 설명하기 위한 행렬로 나누어 행렬 단원을 다루고 있으며 모두 역행렬을 다루고 있고 수학적 추론 및 수학적 모델링에 중점을 두고 행렬을 학습하는 것으로 나타났다. 분석 결과로부터 학교 수학에 행렬을 재편성할 경우 깊이 있는 개념적 이해와 수학적 추론 및 수학적 모델링에 중점을 두어 교육내용을 구성할 것을 제안하는 바이다.

72.5 Ah NCM계 파우치형 리튬이온배터리의 표면온도 상승률이 열폭주 발생시간에 미치는 영향 분석 (Analysis of Effect of Surface Temperature Rise Rate of 72.5 Ah NCM Pouch-type Lithium-ion Battery on Thermal Runaway Trigger Time)

  • 이흥수;홍성호;이준혁;박문우
    • 한국안전학회지
    • /
    • 제36권5호
    • /
    • pp.1-9
    • /
    • 2021
  • With the convergence of the information and communication technologies, a new age of technological civilization has arrived. This is the age of intelligent revolution, known as the 4th industrial revolution. The 4th industrial revolution is based on technological innovations, such as robots, big data analysis, artificial intelligence, and unmanned transportation facilities. This revolution would interconnect all the people, things, and economy, and hence will lead to the expansion of the industry. A high-density, high-capacity energy technology is required to maintain this interconnection. As a next-generation energy source, lithium-ion batteries are in the spotlight today. However, lithium-ion batteries can cause thermal runaway and fire because of electrical, thermal, and mechanical abuse. In this study, thermal runaway was induced in 72.5 Ah NCM pouch-type lithium-ion batteries because of thermal abuse. The surface of the pouch-type lithium-ion batteries was heated by the hot plate heating method, and the effect of the rate of increase in the surface temperature on the thermal runaway trigger time was analyzed using Minitab 19, a statistical analysis program. The correlation analysis results confirmed that there existed a strong negative relationship between each variable, while the regression analysis demonstrated that the thermal runaway trigger time of lithium-ion batteries can be predicted from the rate of increase in their surface temperature.

모의실험을 통한 한국 동해 도루묵(Arctoscopus japonicus)의 자연사망 계수 조건에 따른 가입당 생산 분석 (Simulation-based Yield-per-recruit Analysis of Sandfish Arctoscopus japonicus in the East Sea of Korea Subjected to Natural Mortality Conditions)

  • 이경환;서호영;조기필
    • 한국수산과학회지
    • /
    • 제56권3호
    • /
    • pp.331-340
    • /
    • 2023
  • To estimate the biological reference points, suitable for fisheries management of sandfish Arctoscopus japonicas in the East Sea of Korea, we simulated the yield-per-recruit (Y/R) from age 0 to 6 (0-2,555 days). The stimulation was based on two instantaneous natural mortality conditions: size-dependent (Mt, d-1) and constant (Mcons, d-1); Subsequently, the biological reference points of the two mortality conditions was compared. Mt decreased from 0.0075 d-1 to 0.0018 d-1 depending on growth, and Mcons remained constant at 0.0011 d-1 for all ages. Our Y/R model showed that the maximum yield of Mcons was 14 times higher than that of the Mt. The length at first capture to maximize the harvest at the F0.1 points of the two natural mortality conditions was Lc,t=10.2 cm (TL) and Lc,cons=17 cm (TL). We concluded that Mt was more suitable for estimating M than Mcons; this is because Lc,t showed minimal difference from the current fishing regulations (11 cm, TL), and Mt reflected more biological characteristics than Mcons. We suggest that 10.2 cm and 0.8 as the suitable length at first capture and corresponding age, respectively for efficient fisheries management of sandfish.

Personalized Seamless 라이프스타일 케어 스마트홈 서비스디자인 연구 : 포노 사피엔스 시대를 중심으로 (A Study on The Personalized Seamless Smart Home Service Design for Life-style Care in Phono Sapience era)

  • 박의정;김정우;최재붕
    • 한국IT서비스학회지
    • /
    • 제19권5호
    • /
    • pp.1-14
    • /
    • 2020
  • Mankind has been attempting to live a happy and safe family life in a residential space. Due to the advent of the mobile phone in the 1990s and the smart phone in the 2000s, when the information and communication age came, human life has been innovatively changed. The revolution of human civilization led to the Neolithic Revolution and the Iron Age, followed by a smart phone revolutionizing human life, and the revolution faces with the era of info-communication, smart phones became a daily life and the fourth industrial revolution. The fourth industrial revolution is an era of info-communication technology (ICT), creating a new paradigm across human life through technological developments such as artificial intelligence (AI), IoT, big data, mobile, and cloud. The smart home is actively researched in a direction to support the overall human life as a representative future residential culture paradigm. However, the study considering the needs according to the lifestyle, functional characteristics of each living space and human lifestyle of the Phono Sapiens era where smart phones live like daily life was relatively insufficient. In addition, research on smart home service design should be considered from the apartment residential space planning stage. Therefore, this study has significance in suggesting the direction of research on human-centered smart home service design considering the characteristics of each living space and resident's life-style in the smart phone era.

하이브리드 인공신경망 모형을 이용한 부도 유형 예측 (Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model)

  • 조남옥;김현정;신경식
    • 지능정보연구
    • /
    • 제21권3호
    • /
    • pp.79-99
    • /
    • 2015
  • 부도 예측은 회계와 재무 분야에서 꾸준히 연구되고 있는 분야이다. 초기에는 주로 다중판별분석(multiple discriminant analysis)와 로짓 분석(logit analysis)과 같은 통계적 방법을 이용하였으나, 1990년대 이후에는 경영 분야의 분류 문제를 위해 많은 연구자들이 인공신경망(back-propagation neural network), 사계기반추론(case-based reasoning), 서포트 벡터 머신(support vector machine) 등과 같은 인공지능을 통한 접근법을 이용하여 통계적 방법보다 분류 성과 측면에서 우수함을 입증해왔다. 기존의 기업의 부도에 관한 연구에서 많은 연구자들이 재무비율을 이용하여 부도 예측 모형을 구축하는 것에 초점을 맞추어왔다. 부도예측에 관한 연구가 꾸준히 진행되고 있는 반면, 부도의 세부적인 유형을 예측하여 제시하는 것에 대한 연구는 미흡한 실정이었다. 따라서 본 연구에서는 수익성, 안정성, 활동성 지표를 중심으로 국내 비외감 건설업 기업들의 부도 여부뿐만 아니라 부도의 세부적인 유형까지 예측 가능한 모형을 개발하고자 한다. 본 연구에서는 부도 유형을 예측하기 위해 두 개의 인공신경망 모형을 결합한 하이브리드 접근법을 제안하였다. 첫 번째 인공신경망 모형은 부도예측을 위한 역전파 인공신경망을 이용한 모형이며, 두 번째 인공신경망 모형은 부도 데이터를 몇 개의 유형으로 분류하는 자기조직화지도(self-organizing map)을 이용한 모형이다. 실험 결과를 통해 정의된 5개의 부도 유형인 심각한 부도(severe bankruptcy), 안정성 부족(lack of stability), 활동성 부족(lack of activity), 수익성 부족(lack of profitability), 회생 가능한 부도(recoverable bankruptcy)는 재무 비율에 따라 유형별로 상이한 특성을 갖는 것을 확인할 수 있었다. 본 연구 결과를 통해 신용 평가 분야의 연구자와 실무자들이 기업의 부도의 유형에 대한 유용한 정보를 얻을 것으로 기대한다.

조현병에서 나타나는 후성유전학적 나이 가속도 감속 (Slowing of the Epigenetic Clock in Schizophrenia)

  • 정연오;김진영;카르띠케얀 비자야쿠말;조광원
    • 생명과학회지
    • /
    • 제33권9호
    • /
    • pp.730-735
    • /
    • 2023
  • 지난 10년 동안 인공지능의 도움으로 노화를 정량화하기 위한 수많은 연구가 수행되었다. DNA 메틸화 데이터를 사용하여 다양한 모델이 개발되었으며 흔히 후성유전학적 시계라고 불린다. 후성유전학적 나이 가속화는 일반적으로 질병 상태와도 주로 연관이 있어 보인다. 조현병은 가속 노화 가설과 관련있는 정신질병으로 심각한 정신적, 신체적 스트레스를 동반한다. 다른 심리 질환과 비교했을 때 이 질병은 젊은 사람들에서 높은 사망률과 질병률을 유발한다. 과거 연구에서는 이 질병이 가속 노화 가설과 연관있다고 알려져 있었다. 이번 연구에서는 조현병 환자의 후성유전학적 나이 가속도 변화를 통해 질병에 대한 후성유전학적 통찰을 얻고자 하였다. 후성유전학적 나이 가속화를 측정하기 위해 두 가지 다른 DNA 메틸화 시계 모델을 사용했으며 이는 범조직 모델인 Horvath clock과 Epi clock을 사용하였다. 우리는 Horvath clock과 Epi clock이 모두 호환되는 450k 어레이 데이터를 사용하였다. 그 결과, Epi clock을 사용했을 때 환자샘플에서 후성유전학적 나이 가속화가 더 느리다는 것을 발견했다. Epi clock이 질병으로 인한 DNA 메틸화 변화를 잘 감지해낼 수 있음을 알아내었다. 또한 Epi clock에서 대조군과 환자군에서 차등적으로 메틸화된 CpG 부위를 분석하고 경로 농축 분석을 수행한 결과, 대부분의 CpG가 신경 세포 과정에 관여한다는 사실을 발견했다.