• Title/Summary/Keyword: Age acceleration

Search Result 98, Processing Time 0.026 seconds

The Blood-brain Barrier Permeability of Taurine in Senescence-accelerated Mouse and Normal Mouse (ICR) (노화촉진모델마우스(SAM)와 정상 마우스(ICR)에서 타우린의 혈액-뇌 관문 투과성의 비교)

  • 황인원;이나영;강영숙
    • Biomolecules & Therapeutics
    • /
    • v.10 no.4
    • /
    • pp.218-223
    • /
    • 2002
  • This study compared the blood-brain barrier permeability of [$^3H$] taurine in senescence-accelerated mouse (SAM) and normal mouse with common carotid artery perfusion (CCAP) method and intravenous injection technique to establish a possible relation between aging and changes in tissue levels of taurine. The SAM strains show senescence acceleration and age-associated pathological phenotypes similar to geriatric disorders seen in humans. In the result of this experiments, the plasma clearance of [$^3H$]taurine in SAM was almost comparable with that of normal mice by intravenous injection technique, but the brain volume of distribution ($V_{D brain}$) of [$^3H$]taurine in SAM by CCAP method reduced by 85% compared with that in normal mice. These results suggest that aging may have an effect on the brain transport activity of taurine in disease state model animal.

Effects of Step Length Change on Kinetic Characteristics While Stepping Over an Obstacle From a Position of Quiet Stance in Young and Elderly Adults: A Preliminary Study

  • Kim, Hyeong-Dong
    • Physical Therapy Korea
    • /
    • v.14 no.4
    • /
    • pp.66-74
    • /
    • 2007
  • The aim of the present study was to investigate age-related differences in stepping behavior in response to sensory perturbations of postural balance. The participants for this study were 2 healthy elderly adults (mean age=76.0) and 2 younger adults (mean age=25.5). Subjects were asked to step over a 10 cm high obstacle at self-paced speed with the right limb to land on the primary target (normal step length) that is 10 cm in diameter. However, if, during movement, the light was illuminated, then the subject had to step on the secondary target (long step length). It was planned that the onset of the light would be prior to peak Fx of swing limb, between swing peak Fx and swing toe-off, and after swing toe-off. In the younger adults these secondary visual cues were provided at mean times of 240 ms (standard deviation (SD)=11), 402 ms (SD=13), and 476 ms (SD=88) following the movement onset. Corresponding mean times for the healthy elderly were 150 ms (SD=67), 352 ms (SD=39), and 562 ms (SD=115). Results showed great changes in both group and visual cue condition in Fx ground reaction forces and temporal events following the swing toe-off. Swing limb acceleration force (Fx) and stance peak Fx1 was much greater in the young adults compared to the older adults. Both young and older adults increased stance peak Fx2 in the visual cue condition compared to normal stepping. There was no difference in stance peak Fx2 between the visual cue conditions in both groups. Similarly, the time to stance peak Fx2 was much longer for the visual cue condition than for the normal stepping. It was not different between the visual cue conditions in the young adults, but in the elderly mid and late cue was much greater than early cue. In addition, time to stance peak Fx2 and swing and stance time were much longer in the older adults compared to the young adults for the visual cue conditions. These results suggest that unlike young adults, elderly adults did not flexibly modify their responses to unexpected changes in step length while stepping over obstacles.

  • PDF

Car-tire-related Crushing Injury of the Lower Leg in Children (자동차 바퀴에 의한 소아 아래다리의 압궤 손상)

  • Choi, JaeYeon;Jang, JaeHo;Woo, JaeHyuck;Park, WonBin;Kim, JinJoo;Hyun, SungYeol;Lee, Geun;Gwak, JeeHoon
    • Journal of Trauma and Injury
    • /
    • v.26 no.3
    • /
    • pp.175-182
    • /
    • 2013
  • Purpose: Crushing injuries by car tires result from a combination of friction, shearing, and compression forces and the severity of injury is influenced by the acceleration. Because car-tire injuries of the lower leg in children are common these days but they have received little attention; thus, our purpose was to look closely into this problem. Methods: A retrospective analysis was conducted of data from children under 15 years old age who visited an emergency department because of a car-tire-related crushing injury to the lower leg in pedestrian traffic accident from January 2008 to September 2012. The patient's age, sex, site of injury, degree of injury, associated injuries, type of surgery, and complications were reviewed. Results: There were 39 children, the mean age was 8.0 years, and 71.8% were boys. The dorsal part of the leg was involved most frequently. According to the severity classification, 15 children were grade I, 6 were grade II, and 18 were grade III. Among 24 patients, 13 were treated with skin graft and 3 were treated using a sural flap. Twelve patients developed complications, such as hypertrophic scarring, contractures, and deformities with significant bone loss. Conclusion: Various degrees of skin or soft tissue defects were caused in children by car tires. In this study, patients were often also had tendon or bone damage. Proper and timely initial treatments are needed to reduce the incidence of infection, the number of operative procedures, and the hospital stay.

Whole-body Vibration Exposure of Drill Operators in Iron Ore Mines and Role of Machine-Related, Individual, and Rock-Related Factors

  • Chaudhary, Dhanjee Kumar;Bhattacherjee, Ashis;Patra, Aditya Kumar;Chau, Nearkasen
    • Safety and Health at Work
    • /
    • v.6 no.4
    • /
    • pp.268-278
    • /
    • 2015
  • Background: This study aimed to assess the whole-body vibration (WBV) exposure among large blast hole drill machine operators with regard to the International Organization for Standardization (ISO) recommended threshold values and its association with machine- and rock-related factors and workers' individual characteristics. Methods: The study population included 28 drill machine operators who had worked in four opencast iron ore mines in eastern India. The study protocol comprised the following: measurements of WBV exposure [frequency weighted root mean square (RMS) acceleration ($m/s^2$)], machine-related data (manufacturer of machine, age of machine, seat height, thickness, and rest height) collected from mine management offices, measurements of rock hardness, uniaxial compressive strength and density, and workers' characteristics via face-to-face interviews. Results: More than 90% of the operators were exposed to a higher level WBV than the ISO upper limit and only 3.6% between the lower and upper limits, mainly in the vertical axis. Bivariate correlations revealed that potential predictors of total WBV exposure were: machine manufacturer (r = 0.453, p = 0.015), age of drill (r = 0.533, p = 0.003), and hardness of rock (r = 0.561, p = 0.002). The stepwise multiple regression model revealed that the potential predictors are age of operator (regression coefficient ${\beta}=-0.052$, standard error SE = 0.023), manufacturer (${\beta}=1.093$, SE = 0.227), rock hardness (${\beta}=0.045$, SE = 0.018), uniaxial compressive strength (${\beta}=0.027$, SE = 0.009), and density (${\beta}=-1.135$, SE = 0.235). Conclusion: Prevention should include using appropriate machines to handle rock hardness, rock uniaxial compressive strength and density, and seat improvement using ergonomic approaches such as including a suspension system.

Seismic Responses of Seismically-Isolated Nuclear Power Plants considering Aging of High Damping Rubber Bearing in Different Temperature Environments (다른 온도환경에서 고감쇠고무 적층받침의 경년열화를 고려한 면진 원전구조물의 지진응답)

  • Park, Junhee;Choun, Young-Sun;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.385-392
    • /
    • 2014
  • The isolators have been generally used to reduce a seismic force. If the isolators apply to the nuclear power plants(NPPs), the durability and capacity for the structures and equipments should be ensured during the life time. In this study, the long-term behavior of isolated NPPs was analyzed for ensuring the seismic safety. The properties of isolator due to the age-related degradation were analyzed. And the seismic behavior of isolated buildings was analyzed by considering the aging of rubber bearings in different temperature environments. According to the analysis results, the natural frequency of structures was increased with time. But the maximum acceleration and maximum displacement of isolated structures have not changed significantly. Although the damaged of structure did not occurred by aging of isolators, it was presented that the spectral acceleration at the target frequency of isolated structure increased with the temperature. Therefore the isolators in the isolated buildings should be carefully designed and manufactured considering the temperature-dependancy of rubber material.

The Effect of Increased Running Speed on the Magnitude of Impact Shock Attenuation during Ground Contact (착지 시 달리기 속도 증가가 충격 쇼크 흡수에 미치는 영향)

  • Ryu, Jiseon
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.3
    • /
    • pp.197-204
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the effect of increased running speed on the magnitude of impact shock attenuation in high frequency (9~20 Hz) at support phase on the treadmill running. Method: Twenty-four healthy male heel-toe runners participated in this study. Average age, height, mass, and preference running speed were 23.43±3.78 years, 176.44±3.38 cm, 71.05±9.04 kg, and 3.0±0.5 m/s, respectively. Three triaxial accelerometer (Noraxon, USA) were mounted to the tuberosity of tibia, PSIS (postero-superior iliac spine), and forehead to collect acceleration signals, respectively. Accelerations were collected for 20 strides at 1,000 Hz during treadmill (Bertec, USA) running at speed of 2.5, 3.0, 3.5, and 4.0 m/s. Power Spectrum Density (PSD) of three acceleration signals was calculated to use in transfer function describing the gain and attenuation of impact shock between the tibia and PSIS, and forehead. One-way ANOVA were performed to compare magnitude of shock attenuation between and within running speeds. The alpha level for all statistical tests was .05. Results: No significant differences resulted for magnitude of the vertical and resultant impact shock attenuation between the tibia and PSIS, and forehead between running speeds. However, significant differences within running speed were found in magnitude of the vertical shock attenuation between tibia and PSIS, tibia and forehead at speed of 2.5, 3.0 m/s, respectively. Conclusion: In conclusion, it might be conjectured that muscles covering the knee and ankle joints and shoe's heel pad need to strengthen to keep the lower extremities from injuries by impact shock at relatively fast running speed that faster than preferred running speed.

A Kinetics Analysis of Tucked Backward Salto on the Balance Beam (평균대 제자리 무릎 구부려 뒤공중돌기 기술의 운동역학적 분석)

  • Kim, Kew-Wan;Ryu, Young;Jeon, Kyoung-Kyu
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.4
    • /
    • pp.395-404
    • /
    • 2012
  • This study was to perform the kinetic analysis of tucked backward salto on the balance beam. Eight women's gymnastics players(age: $15.88{\pm}2.45yrs$, career: $6.38{\pm}0.52yrs$, height: $152.38{\pm}7.35cm$, weight: $44.25{\pm}7.54kg$) of the I-region participated in this study. The kinematic variables were analyzed response time of motion, angle, velocity, acceleration and the kinetic variables were analyzed ground reaction force(GRF) of motion. For measure and analysis of kinematic and kinetic variables of this study, used to synchronized to 6 Eagle camera and 1 force plate, used to the Cortex(Ver. 1.0) for analyzed of variables. The results were as follows; To the kinematic variables of tucked backward salto on the balance beam, a time appeared longer landing than air rotation, changes of angle regulated segment of body smaller moment of inertia when air rotation, larger moment of inertia when releasing and landing. A velocity appeared fast motion when releasing and air rotation of body, but appeared more decelerations from landing and acceleration showed to be tended to velocity. A GRF appears jump more than twice the weight at the moment that showed the power of motion to all subject.

Biomechanical Analysis of Injury Factor According to the Change of Direction After Single-leg Landing

  • Kim, Jong-Bin;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.433-441
    • /
    • 2016
  • Objective: The purpose of this study was to understand the injury mechanism and to provide quantitative data to use in prevention or posture correction training by conducting kinematic and kinetic analyses of risk factors of lower extremity joint injury depending on the change of direction at different angles after a landing motion. Method: This study included 11 men in their twenties (age: $24.6{\pm}1.7years$, height: $176.6{\pm}4.4cm$, weight: $71.3{\pm}8.0kg$) who were right-leg dominant. By using seven infrared cameras (Oqus 300, Qualisys, Sweden), one force platform (AMTI, USA), and an accelerometer (Noraxon, USA), single-leg drop landing was performed at a height of 30 cm. The joint range of motion (ROM) of the lower extremity, peak joint moment, peak joint power, peak vertical ground reaction force (GRF), and peak vertical acceleration were measured. For statistical analysis, one-way repeated-measures analysis of variance was conducted at a significance level of ${\alpha}$ <.05. Results: Ankle and knee joint ROM in the sagittal plane significantly differed, respectively (F = 3.145, p = .024; F = 14.183, p = .000), depending on the change of direction. However, no significant differences were observed in the ROM of ankle and knee joint in the transverse plane. Significant differences in peak joint moment were also observed but no statistically significant differences were found in negative joint power between the conditions. Peak vertical GRF was high in landing (LAD) and after landing, left $45^{\circ}$ cutting (LLC), with a significant difference (F = 9.363, p = .000). The peak vertical acceleration was relatively high in LAD and LLC compared with other conditions, but the difference was not significant. Conclusion: We conclude that moving in the left direction may expose athletes to greater injury risk in terms of joint kinetics than moving in the right direction. However, further investigation of joint injury mechanisms in sports would be required to confirm these findings.

The Effects of Running Shoes' Midsole Properties on Impact and Lower Extremity Joint's Dynamic Stability

  • Ryu, Sihyun;Gil, Ho-Jong
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.4
    • /
    • pp.290-296
    • /
    • 2021
  • Objective: The purpose of this research is to examine the effects of three types of different running shoes with different properties on impact variables (PVRGF and VLR) and the lower extremity joint's dynamic stability variables (LyEs of DPA, IEA, FEA, DPAV, IEAV, and FEAV) during running. Method: The participants in this research were 12 males (Age: 22.0 ± 3.3 years, Height: 177.2 ± 4.1 cm, Weight: 74.3 ± 9.6 kg). One type of N company's running shoes and two types (FA, FB) of F company's running shoes were used. As for the properties of the running shoes, thickness (mm), dwell time (ms), peak acceleration (m/s2), and energy return (%) were measured. The motions running at 3.5 m/s on a treadmill (Instrumented treadmill, Bertec, USA) wearing each type of running shoes were analyzed. Results: Although the VLR of the thick running shoes (FB) was smaller than that of the other running shoes (N, FA), the LyEs of PVGRF and DPA were larger (p<.05). Even though the running shoes' dwell time (i.e., impact absorption time) and peak acceleration showed a positive correlation with the LyEs of DPAV, IEAV, and FEAV, the energy return showed a negative correlation (p<.05). Conclusion: Our results indicated that the running shoes with excellent impact absorption function are predicted to be suitable for running beginners who need to reduce the burden of the lower extremity joint during running. The running shoes with excellent energy return are expected to be suitable for mid-and long-distance running elite athletes or marathoners to whom stability and consistency are essential during running.

Bridge Safety Determination Edge AI Model Based on Acceleration Data (가속도 데이터 기반 교량 안전 판단을 위한 Edge AI 모델)

  • Jinhyo Park;Yong-Geun Hong;Joosang Youn
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.4
    • /
    • pp.1-11
    • /
    • 2024
  • Bridges crack and become damaged due to age and external factors such as earthquakes, lack of maintenance, and weather conditions. With the number of aging bridge on the rise, lack of maintenance can lead to a decrease in safety, resulting in structural defects and collapse. To prevent these problems and reduce maintenance costs, a system that can monitor the condition of bridge and respond quickly is needed. To this end, existing research has proposed artificial intelligence model that use sensor data to identify the location and extent of cracks. However, existing research does not use data from actual bridge to determine the performance of the model, but rather creates the shape of the bridge through simulation to acquire data and use it for training, which does not reflect the actual bridge environment. In this paper, we propose a bridge safety determination edge AI model that detects bridge abnormalities based on artificial intelligence by utilizing acceleration data from bridge occurring in the field. To this end, we newly defined filtering rules for extracting valid data from acceleration data and constructed a model to apply them. We also evaluated the performance of the proposed bridge safety determination edge AI model based on data collected in the field. The results showed that the F1-Score was up to 0.9565, confirming that it is possible to determine safety using data from real bridge, and that rules that generate similar data patterns to real impact data perform better.