• Title/Summary/Keyword: Ag nano

Search Result 347, Processing Time 0.024 seconds

Effect of Coating with the Mixture of PEDOT:PEG and Sulfuric Acid to Enhance Conductivity of Bacterial Cellulose Platform Film (박테리아 셀룰로오스 기반 전도성 막의 전도도 향상을 위한 PEDOT:PEG와 황산혼합액 코팅의 영향)

  • Yim, Eun-Chae;Kim, Seong-Jun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.114-119
    • /
    • 2016
  • In this study, we tried to add the conductivity to natural polymer like bacterial cellulose (BC) coated with the conductive polymer PEDOT:PEG, graphene and silver nano-wire (AgNW). Sulfuric acid of 10 to 20% was previously mixed with PEDOT:PEG and then the solution was electron spin-coated on the BC membrane. And then, additive coating with graphene and AgNW were done to improve conductivity, which was examined by hall effect. As the result, we confirmed a considerable improvement of conductivity compared to BC-coated film without sulfuric acid treatment as $2.487{\times}10^{10}$ vs $8.093{\times}10^{15}$ ($1/cm^3$), showing higher electron density with $3.25{\times}10^5$ times. Also, we identified that changed particle type to the polymer type by sulfuric acid using SEM analysis. For FT-IR analysis, it was confirmed that S-O radical ($1200cm^{-1}$) increased in the sulfuric acid treatment than non-treated sulfuric acid. As the method used very small amount of PEDOT:PEG, its transparency could be kept, and pre-treatment process of sulfuric acid will be able to simplify the production process.

The Electrochemical Studies of Non-enzymatic Glucose Sensor on the Nickel Nanoparticle-deposited ITO Electrode (ITO 전극 위에 고정된 니켈 나노 입자를 이용한 무효소 혈당센서에 관한 전기화학적인 연구)

  • Oh, In-Don;Kim, Samantha;Choi, Young-Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.164-171
    • /
    • 2014
  • A highly sensitive and selective non-enzymatic glucose sensor has gained great attention because of simple signal transformation, low-cost, easily handling, and confirming the blood glucose as the representative technology. Until now, glucose sensor has been developed by the immobilization of glucose oxidase (GOx) on the surface of electrodes. However although GOx is quite stable compared with other enzymes, the enzyme-based biosensors are still impacted by various environment factors such as temperature, pH value, humidity, and toxic chemicals. Non-enzymatic sensor for direct detecting glucose is an attractive alternative device to overcome the above drawbacks of enzymatic sensor. Many efforts have been tried for the development of non-enzymatic sensors using various transition metals (Pt, Au, Cu, Ni, etc.), metal alloys (Pt-Pb, Pt-Au, Ni-Pd, etc.), metal oxides, carbon nanotubes and graphene. In this paper, we show that Ni-based nano-particles (NiNPs) exhibit remarkably catalyzing capability for glucose originating from the redox couple of $Ni(OH)_2/NiOOH$ on the surface of ITO electrode in alkaline medium. But, these non-enzymatic sensors are nonselective toward oxidizable species such as ascorbic acid the physiological fluid. So, the anionic polymer was coated on NiNPs electrode preventing the interferences. The oxidation of glucose was highly catalyzed by NiNPs. The catalytically anodic currents were linearly increased in proportion to the glucose concentration over the 0~6.15 mM range at 650 mV versus Ag/AgCl.

Effect of Coolants and Metal Bumps on the heat Removal of Liquid Cooled Microchannel System (액랭식 마이크로채널 시스템 내 냉매와 범프의 열 제거 효과에 대한 연구)

  • Won, Yonghyun;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.61-67
    • /
    • 2017
  • As transistor density increases rapidly, a heat flux from IC device rises at fast rate. Thermal issues raised by high heat flux cause IC's performance and reliability problems. To solve these thermal management problems, the conventional cooling methods of IC devices were reached their thermal limit. As a result, alternative cooling methods such as liquid heat pipe, thermoelectric cooler, thermal Si via and etc. are currently emerging. In this paper microchannel liquid cooling system with TSV was investigated. The effects of 2 coolants (DI water and ethylene glycol 70 wt%) and 3 metal bumps (Ag, Cu, Cr/Au/Cu) on cooling performance were studied, and the total heat flux of various coolant and bump cases were compared. Surface temperature of liquid cooling system was measured by infrared microscopy, and liquid flowing through microchannel was observed by fluorescence microscope. In the case of ethylene glycol 70 wt% at $200^{\circ}C$ heating temperature, the total heat flux was $2.42W/cm^2$ and most of total heat flux was from liquid cooling effect.

Synthesis of Several Osmium Redox Complexes and Their Electrochemical Characteristics in Biosensor (오스뮴 착물들의 합성 및 전기화학적인 특성에 관한 연구)

  • Kim, Hyug-Han;Choi, Young-Bong;Tae, Gun-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.176-183
    • /
    • 2008
  • Redox complexes to transport electrodes from bioreactors to electrodes are very important part in electrochemical biosensor industry. A novel osmium redox complexes were synthesized by the coordinating pyridine group having different functional group at 4-position with osmium metal. Newly synthesized osmium complexes are described as ${[Os(dme-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dme-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dmo-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dcl-bpy)}_2{(ap-im)Cl]}^{+/2+}$. We have been studied the electrochemical characteristics of these osmium complex with electrochemical techniques such as cyclic voltammetry and chronoamperommetry. Osmium redox complexes were immobilized on the screen printed carbon electrode(SPE) with deposited gold nanoparticles. The electrical signal converts the osmium redox films into an electrocatalyst for glucose oxidation. Each catalytic currents were related with the potentials of osmium complexes.

Power Generating Characteristics of Zinc Oxide Nanorods Grown on a Flexible Substrate by a Hydrothermal Method

  • Choi, Jae-Hoon;You, Xueqiu;Kim, Chul;Park, Jung-Il;Pak, James Jung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.640-645
    • /
    • 2010
  • This paper describes the power generating property of hydrothermally grown ZnO nanorods on a flexible polyethersulfone (PES) substrate. The piezoelectric currents generated by the ZnO nanorods were measured when bending the ZnO nanorod by using I-AFM, and the measured piezoelectric currents ranged from 60 to 100 pA. When the PtIr coated tip bends a ZnO nanorod, piezoelectrical asymmetric potential is created on the nanorod surface. The Schottky barrier at the ZnO-metal interface accumulates elecntrons and then release very quickly generating the currents when the tip moves from tensile to compressed part of ZnO nanorod. These ZnO nanorods were grown almost vertically with the length of 300-500 nm and the diameter of 30-60 nm on the Ag/Ti/PES substrate at $90^{\circ}C$ for 6 hours by hydrothermal method. The metal-semiconductor interface property was evaluated by using a HP 4145B Semiconductor Parameter Analyzer and the piezoelectric effect of the ZnO nanorods were evaluated by using an I-AFM. From the measured I-V characteristics, it was observed that ZnO-Ag and ZnO-Au metal-semiconductor interfaces showed an ohmic and a Schottky contact characteristics, respectively. ANSYS finite element simulation was performed in order to understand the power generation mechanism of the ZnO nanorods under applied external stress theoretically.

Novel Water-Soluble Polyfluorenes as an Interfacial layer leading to Cathodes-Independent High Performance of Organic Solar Cells

  • Oh, Seung-Hwan;Shim, Hee-Sang;Park, Dong-Won;Jeong, Yon-Kil;Lee, Jae-Kwang;Moon, Seung-Hyeon;Kim, Dong-Yu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.394-394
    • /
    • 2009
  • Water solubility of conjugated polymers may offer many applications. Potential applications of water-soluble conjugated polymers include the polymer light-emitting diode and new materials for nano and micro hollow-capsules, and bio- or chemo-sensors. We synthesized neutral polyfluorenes containing bromo-alkyl groups by the palladium catalyzed Suzuki coupling reaction. Bromo-alkyl side groups in neutral polyfluorenes were quaternized by tri-methyl amine solution. The electrochemical and optical properties of water-soluble conjugated polymers are discussed. This novel synthesized water-soluble conjugated polymers were used as a interfacial dipole layer between active layer and metal cathode in polymer solar cell for enhancement of open-circuit voltage (Voc), which is one of the most critical factors in determining device characteristics. We also investigated the device performance of polymer solar cell with different metal cathode such as Al, Ag, Au and Cu. In polymer solar cell, novel cationic water-soluble conjugated polymers were inserted between active layer and high-work function cathode (Al, Ag, Au and Cu).

  • PDF

Microstructure and Electrical Resistivity of Ink-Jet Printed Nanoparticle Silver Films under Isothermal Annealing (잉크젯 프린팅된 은(Ag) 박막의 등온 열처리에 따른 미세조직과 전기 비저항 특성 평가)

  • Choi, Soo-Hong;Jung, Jung-Kyu;Kim, In-Young;Jung, Hyun-Chul;Joung, Jae-Woo;Joo, Young-Chang
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.453-457
    • /
    • 2007
  • Interest in use of ink-jet printing for pattern-on-demand fabrication of metal interconnects without complicated and wasteful etching process has been on rapid increase. However, ink-jet printing is a wet process and needs an additional thermal treatment such as an annealing process. Since a metal ink is a suspension containing metal nanoparticles and organic capping molecules to prevent aggregation of them, the microstructure of an ink-jet printed metal interconnect 'as dried' can be characterized as a stack of loosely packed nanoparticles. Therefore, during being treated thermally, an inkjet-printed interconnect is likely to evolve a characteristic microstructure, different from that of the conventionally vacuum-deposited metal films. Microstructure characteristics can significantly affect the corresponding electrical and mechanical properties. The characteristics of change in microstructure and electrical resistivity of inkjet-printed silver (Ag) films when annealed isothermally at a temperature between 170 and $240^{\circ}C$ were analyzed. The change in electrical resistivity was described using the first-order exponential decay kinetics. The corresponding activation energy of 0.44 eV was explained in terms of a thermally-activated mechanism, i.e., migration of point defects such as vacancy-oxygen pairs, rather than microstructure evolution such as grain growth or change in porosity.

Hydrogel Dressing with a Nano-Formula against Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa Diabetic Foot Bacteria

  • El-Naggar, Moustafa Y.;Gohar, Yousry M.;Sorour, Magdy A.;Waheeb, Marian G.
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.408-420
    • /
    • 2016
  • This study proposes an alternative approach for the use of chitosan silver-based dressing for the control of foot infection with multidrug-resistant bacteria. Sixty-five bacterial isolates were isolated from 40 diabetic patients. Staphylococcus aureus (37%) and Pseudomonas aeruginosa (18.5%) were the predominant isolates in the ulcer samples. Ten antibiotics were in vitro tested against diabetic foot clinical bacterial isolates. The most resistant S. aureus and P. aeruginosa isolates were then selected for further study. Three chitosan sources were tested individually for chelating silver nanoparticles. Squilla chitosan silver nanoparticles (Sq. Cs-Ag0) showed the maximum activity against the resistant bacteria when mixed with amikacin that showed the maximum synergetic index. This, in turn, resulted in the reduction of the amikacin MIC value by 95%. For evaluation of the effectiveness of the prepared dressing using Artemia salina as the toxicity biomarker, the LC50 was found to be 549.5, 18,000, and 10,000 μg/ml for amikacin, Sq. Cs-Ag0, and dressing matrix, respectively. Loading the formula onto chitosan hydrogel dressing showed promising antibacterial activities, with responsive healing properties for the wounds in normal rats of those diabetic rats (polymicrobial infection). It is quite interesting to note that no emergence of any side effect on either kidney or liver biomedical functions was noticed.

Fundamentals and Applications of Multi-functional NSOM Technology to Characterization of Nano Structured Materials (다기능 NSOM (mf-NSOM) 을 이용한 나노 구조 재료 분석에 관한 원리와 응용)

  • Lee Woo-Jin;Pyun Su-Il;Smyrl W. H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.108-123
    • /
    • 2004
  • Imaging of surfaces and structures by near-field scanning optical microscopy (NSOM) has matured and is routinely used for studies ranging from biology to materials science. Of interest in this review paper is a versatility of modified or multi-functional NSOM (mf-NSOM) to enable high resolution imaging in several modes: (1) Concurrent fluorescence and Topographical Imaging (gases) (2) Microspectroscopy (gases) (3) Concurrent Scanning Electrochemical and Topographical Imaging (SECM) (liquids) (4) Concurrent Photoelectrochemical and Topographical Imaging (PEM) (liquids) The present study will summarize some of the recent advances in mf-NSOM work confirmed and supported by the results from several other imaging techniques of optical, fluorescence, electron and electrochemical microscopy. The studies are directed at providing local information on pitting precursor sites and vulnerable areas on metal and semiconductor surfaces, and at reactive sites on heterogeneous, catalytic substrates, especially on Al 2024 alloy and polycrystalline Ti. In addition, we will introduce some results related to the laser-induced nanometal (Ag) synthesis using mf-NSOM.

Preparation of Flame Retardant and Antibacterial Wood with Composite Membrane Coating

  • XU, Jun-xian;LIU, Yang;WEN, Ming-yu;PARK, Hee-Jun;ZHU, Jia-zhi;LIU, Yu-nan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.658-666
    • /
    • 2021
  • A novel flame retardant and antibacterial composite membrane coating for wood surfaces was prepared by adding POSS-based phosphorous nitrogen flame retardant (later referred to as NH2-POSS) and silver nanoparticles (Ag NPs) to chitosan (CS). The effects of NH2-POSS content (mass fractions of CS 0%, 0.5%, 1%, 3%, 5%, and 7%) on the structure and properties of the composite membrane coating on wood were investigated. The composite film was prepared by the method of blending and ducting. Contact angle, tensile property and antibacterial effects of the composite film were measured, and infrared spectroscopy was used. The results show that the addition of NH2-POSS can not only improve the toughness of the membrane, but also the flame retardancy of the membrane, which improves the application of the membrane in wood products. However, with the addition of NH2-POSS, the transparency of the composite membrane was weakened. The inhibitory effect of the composite membrane on the growth of Escherichia coli was enhanced with the increase in Ag NPs. This research provides a foundation for the application of functional wood.