• Title/Summary/Keyword: Ag nano

Search Result 342, Processing Time 0.037 seconds

The Effect of Particle Size on Rheological Properties of Highly Concentrated Ag Nanosol (초 고농도 Ag 나노 졸의 입자크기 제어가 잉크 점성거동에 미치는 영향)

  • Song, Hae-Chon;Nham, Sahn;Lee, Byong-Seok;Choi, Young-Min;Ryu, Beyong-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.41-46
    • /
    • 2009
  • The rheological properties of highly concentrated Ag nano sol depending on particle size were studied. The Ag nano sol was prepared by reducing the Ag ion in aqueous solution. The size of Ag nano particle was controlled by two steps of nucleation and growth, and the thickness of adsorption layer was varied by molecular weight of polyelectrolytes. The polyelectrolytes acted as not only ionic complex agent in ionic state and but also dispersant after formation of Ag nano sol. The effective volume was controlled by combination of varying the molecular weight of polyelectrolytes and the size Ag nano sol. The particle size and the viscosity of nano sol were characterized by particle size analyzer, HR-TEM and cone & plate viscometer. It was found that the 10 nm and 40 nm-sized Ag nano sols were prepared by controlling the nucleation and growth steps, respectively. Finally, we could prepare highly concentrated Ag nano sol over 50 wt%.

The Effect of Silver Nano-Particles on Surface Plasmon-enhanced OLEDs

  • Yeo, Ye-Won;Yang, Ki-Youl;Choi, Kyung-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1220-1223
    • /
    • 2009
  • The effect of silver (Ag) nano-particles on OLEDs was investigated by using a finite difference time domain (FDTD) tool. The proposed OLEDs employed Ag nanoparticles thermally deposited in a high vacuum on a cathode. The emission rate of the exciton was improved by 1.8 fold compared to the conventional OLEDs without Ag nano-particles. Less spacing between the dipole source and the Ag nano-particles resulted in a larger emission rate of the exciton in the OLED with nano-particles. The size of the Ag nano-particles was proportional to the emission rate of the exciton in a range of nano-meter scale of nano-particles. The enhancement of the emission rate of the exciton due to Ag nano-particles caused the improvement in the efficiency of the proposed OLED.

  • PDF

Properties of Blocking Layer with Ag Nano Powder in a Dye Sensitized Solar Cell

  • Noh, Yunyoung;Kim, Kwangbae;Choi, Minkyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.105-109
    • /
    • 2016
  • We prepared a working electrode (WE) with a blocking layer (BL) containing 0 ~ 0.5 wt% Ag nano powders to improve the energy conversion efficiency (ECE) of dye sensitized solar cell (DSSC). FESEM and micro-Raman were used to characterize the microstructure and phase. UV-VIS-NIR spectroscopy was employed to determine the adsorption of the WE with Ag nano powders. A solar simulator and a potentiostat were used to confirm the photovoltaic properties of the DSSC with Ag nano powders. From the results of the microstructural analysis, we confirmed that Ag nano powders with particle size of less than 150 nm were dispersed uniformly on the BL. Based on the phase and adsorption analysis, we identified the existence of Ag and found that the adsorption increased when the amount of Ag increased. The photovoltaic results show that the ECE became 4.80% with 0.3 wt%-Ag addition compared to 4.31% without Ag addition. This improvement was due to the increase of the localized surface plasmon resonance (LSPR) of the BL resulting from the addition of Ag. Our results imply that we might be able to improve the efficiency of a DSSC by proper addition of Ag nano powder to the BL.

Reflectivity characteristics of Ag nano-crystals grown by electroless plating (무전해 도금에 의해 성장되어진 은 나노결정의 반사율 특성)

  • Kim, Shin-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.5
    • /
    • pp.218-223
    • /
    • 2013
  • In this study, the reflectivity characteristics of Ag nano-coating grown by electroless plating were investigated in order to use as the reflecting plate of BLU (Back Light Unit) in the LCD (Liquid Crystal Display) or LED (Light Emitting Diode) display equipment. The microstructure of Ag nano-coating was polycrystalline nano-structure that consisted of Ag nano-crystals to be reduced and precipitated, and the size of reduced nano-crystals increased as the thickness of nano-coating increased. The reflectivity of Ag nano-coating in the visible light decreased as the thickness of nano-coating increased and the reduction of reflectivity was more severe in the short wavelength region of visible light. The decrease of reflectivity was closely related to the size of Ag nano-crystal and was thought to be due to the larger surface roughness of larger nano-coating thickness. Therefore, the finer Ag nano-crystals and thinner nano-coating thickness could be favorable for the higher reflectivity of Ag nano-coating grown by electroless plating.

Microstructure and Synthesis of Ag Spot-coated Cu Nanopowders by Hydrothermal-attachment Method using Ag Colloid (수열흡착법을 이용한 은 점코팅된 구리 나노분말의 합성과 미세조직)

  • Kim, Hyeong-Chul;Han, Jae-Kil
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.546-551
    • /
    • 2011
  • Ag spot-coated Cu nanopowders were synthesized by a hydrothermal-attachment method (HA) using oleic acid capped Ag hydrosol. Cu nano powders were synthesized by pulsed wire exploding method using 0.4 mm in diameter of Cu wire (purity 99.9%). Synthesized Cu nano powders are seen with comparatively spherical shape having range in 50 nm to 150 nm in diameter. The oleic acid capped Ag hydrosol was synthesized by the precipitation-redispersion method. Oleic acid capped Ag nano particles showed the narrow size distribution and their particle size were less than 20 nm in diameter. In the case of nano Ag-spot coated Cu powders, nanosized Ag particles were adhered in the copper surface by HAA method. The components of C, O and Ag were distributed on the surface of copper powder.

Evaluation of the cell viability and antimicrobial effects of orthodontic bands coated with silver or zinc oxide nanoparticles: An in vitro study

  • Rashin Bahrami;Maryam Pourhajibagher;lireza Badiei;Reza Masaeli;Behrad Tanbakuchi
    • The korean journal of orthodontics
    • /
    • v.53 no.1
    • /
    • pp.16-25
    • /
    • 2023
  • Objective: We aimed to evaluate the cell viability and antimicrobial effects of orthodontic bands coated with silver or zinc oxide nanoparticles (nano-Ag and nano-ZnO, respectively). Methods: In this experimental study, 30 orthodontic bands were divided into three groups (n = 10 each): control (uncoated band), Ag (silver-coated band), and ZnO (zinc oxide-coated band). The electrostatic spray-assisted vapor deposition method was used to coat orthodontic bands with nano-Ag or nano-ZnO. The biofilm inhibition test was used to assess the antimicrobial effectiveness of nano-Ag and nano-ZnO against Streptococcus mutans, Lactobacillus acidophilus, and Candida albicans. Biocompatibility tests were conducted using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. The groups were compared using oneway analysis of variance with a post-hoc test. Results: The Ag group showed a significantly higher reduction in the number of L. acidophilus, C. albicans, and S. mutans colonies than the ZnO group (p = 0.015, 0.003, and 0.005, respectively). Compared with the control group, the Ag group showed a 2-log10 reduction in all the microorganisms' replication ability, but only S. mutants showed a 2-log10 reduction in replication ability in the ZnO group. The lowest mean cell viability was observed in the Ag group, but the difference between the groups was insignificant (p > 0.05). Conclusions: Coating orthodontic bands with nano-ZnO or nano-Ag induced antimicrobial effects against oral pathogens. Among the nanoparticles, nano-Ag showed the best antimicrobial activity and nano-ZnO showed the highest biocompatibility.

A Study on the Application of Ag Nano-Dots Structure to Improve the Light Trapping Effect of Crystalline Silicon Solar Cell (단결정 실리콘 태양전지의 광 포획 효과 개선을 위한 Ag nano-dots 구조 적용 연구)

  • Choi, Jeong-Ho;Roh, Si-Cheol;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.19-24
    • /
    • 2019
  • In this study, the Ag nano-dots structure was applied to the textured wafer surface to improve the light trapping effect of crystalline silicon solar cell. The Ag nano-dots structure was formed by the annealing of Ag thin film. Ag thin film deposition was performed using a thermal evaporator. The effect of light trapping was compared and analyzed through light reflectance measurements. The optimization process of the Ag nano-dots structure was made by varying the thickness of Ag thin film, the annealing temperature and time. The thickness of Ag thin films was in the range of 5 ~ 20 nm. The annealing temperature was in the range of 450~650℃ and the annealing time was in the range of 30 ~ 60 minutes. As a result, the light reflectance of 10 nm Ag thin film annealed at 650℃ for 30 minutes showed the lowest value of about 9.67%. This is a value that is about 3.37% lower than the light reflectance of the sample that has undergone only the texturing process. Finally, the change of the light reflectance by the HF treatment of the sample on which the Ag nano-dots structure was formed was investigated. The HF treatment time was in the range of 0 ~ 120 seconds. As a result, the light reflectance decreased by about 0.41% due to the HF treatment for 75 seconds.

A Study on Application of Ag Nano-Dots and Silicon Nitride Film for Improving the Light Trapping in Mono-crystalline Silicon Solar Cell (단결정 실리콘 태양전지의 광 포획 개선을 위한 Ag Nano-Dots 및 질화막 적용 연구)

  • Choi, Jeong-Ho;Roh, Si-Cheol;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.12-17
    • /
    • 2019
  • In this study, the Ag nano-dots structure and silicon nitride film were applied to the textured wafer surface to improve the light trapping effect of mono-crystalline silicon solar cell. Ag nano-dots structure was formed by performing a heat treatment for 30 minutes at 650℃ after the deposition of 10nm Ag thin film. Ag thin film deposition was performed using a thermal evaporator. The silicon nitride film was deposited by a Hot-wire chemical vapor deposition. The effect of light trapping was compared and analyzed through light reflectance measurements. Experimental results showed that the reflectivity increased by 0.5 ~ 1% under all nitride thickness conditions when Ag nano-dots structure was formed before nitride film deposition. In addition, when the Ag nano-dots structure is formed after deposition of the silicon nitride film, the reflectance is increased in the nitride film condition of 70 nm or more. When the HF treatment was performed for 60 seconds to improve the Ag nano-dot structure, the overall reflectance was improved, and the reflectance was 0.15% lower than that of the silicon nitride film-only sample at 90 nm silicon nitride film condition.

Brush Painting을 이용하여 제작된 ITO Nanoparticle/Ag Nanowire/ITO Nanoparticle 다층 하이브리드 투명전극 특성 연구

  • Jeong, Jin-A;Jang, Yun-Jin;Kim, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.595-595
    • /
    • 2013
  • 본 연구에서는 brush painting공법을 이용하여 인쇄형 유기태양전지에 적용이 가능한 ITO nanoparticle/Ag nanowire/ITO nanoparticle (Nano IAI) 다층 하이브리드 투명 전극의 전기적, 광학적, 구조적 특성을 연구하였다. 평균 25 nm 사이즈의 ITO 나노 입자로 구성된 ITO 나노 잉크와 직경 20~25 nm의 Ag nanowire 잉크를 기반으로 Brush painting 기술을 적용해 상온, 상압에서 낮은 면저항과 높은 투과도를 가지는 Nano IAI 하이브리드 투명 전극을 제작하였다. Nano IAI 투명 전극 제작 시 일정한 두께에서 Ag nanowire 코팅을 위한 brush painting 횟수를 변수로 하여 최적화 공정을 진행하였으며, Ag nanowire가 2번 brush painting 된 Nano IAI 다층 하이브리드 투명전극은 $3.4{\times}10^{-3}$ ohm-cm의 비저항과 52.33 ohm/square의 낮은 면저항을 나타내었다. 이를 통해 효과적으로Ag nanowire를 ITO nanoparticle 사이에 삽입할 경우, 고온의 열처리 공정을 통하지 않고 낮은 면저항을 가지는 인쇄형 투명 전극을 구현할 수 있음을 확인할 수 있었다. 특히 Nano IAI 다층 하이브리드 전극은 83.83%의 높은 투과도를 나타내는데 이는 삽입된 Ag Nanowire의 폭과 길이가 나노 사이즈이기 때문에 입사되는 빛이 흡수되기보다 대부분 투과하기 때문으로 사료된다. 또한, XRD 분석과 HRTEM 분석을 통해 Nano IAI 다층 하이브리드 투명전극의 전도 메커니즘을 설명하였다. 이와 같은 우수한 전기적, 광학적 특성은 brush painting 기법으로 제작된 Nano IAI 다층 하이브리드 투명 전극의 인쇄형 유기태양전지 적용 가능성을 나타낸다.

  • PDF

Fabrication and Characterization of Ag Nanoparticle Dispersed Polymer Nanofiber and Ag Nanofiber Using Electrospinning Method (전기방사법을 이용한 Ag 나노입자 분산 고분자 나노파이버와 Ag 나노파이버 제조 및 특성 평가)

  • Kim, Hee-Taik;Hwang, Chi-Yong;Song, Han-Bok;Lee, Kun-Jae;Joo, Yeon-Jun;Hong, Seong-Jei;Kang, Nam-Kee;Park, Seong-Dae;Kim, Ki-Do;Cho, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.114-118
    • /
    • 2008
  • Functional nanomaterial is expected to have improved capacities on various fields. Especially, metal nanoparticles dispersed in polymer matrix and metal nanofiber, one of the functional nanomaterials, are able to achieve improvement of property in the electric and other related fields. In this study, the fabrication of metal (Ag) nanoparticle dispersed nanofibers were attempted. The Ag nanoparticle dispersed polymer nanofiber and Ag nanofiber were fabricated by electrospinning method using electric force. First, PVP/$AgNO_3$ nanofibers were synthesized by electrospinning in $18{\sim}22kV$ voltage with the starting materials (Ag-nitrate) added polymer (PVP; poly (vinylpyrrolidone)). Then Ag nanoparticle dispersed polymer nanofibers were fabricated to reduce hydrogen reduction at $150^{\circ}C$ for 3hr. And Ag nanofibers were synthesized by the decomposited of PVP at $300{\sim}500^{\circ}C$ for 3hr. The nanofibers were analyzed by XRD, TGA, FE-SEM and TEM. The experimental results showed that the Ag nanofibers could be applied in many fields as an advanced material.