• Title/Summary/Keyword: Ag anode

Search Result 80, Processing Time 0.021 seconds

The Effect of Opening Velocity on the Arc Erosion of AgWC/AgCdO Contacts (AgWC/AgCdO 접점의 소모특성에 미치는 개리속도의 영향)

  • Yeon, Young-Myoung;Park, Hong-Tae;Lee, Sang-Yup;Cho, Sang-Sun;Oh, Il-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.517-520
    • /
    • 2003
  • The purpose of this paper is to investigate the effect of arc current and contact velocity on the erosion of silver contact to be used in low voltage circuit breakers. The arc current range from $2kA_{rms}$ to $20kA_{rms}$. A test system allows the control of the opening velocity profiles with contact velocities up to 10m/s and also enables the synchronization of the contact opening with a point on the arc current waveform. Contact erosion is evaluated by measuring the mass change of the cathode and anode. The results show that increase the opening velocity from 2m/s to 6m/s leads to an decrease in the contact erosion. The material transfer from one electrode to another is shown to depend on the transfer charge and the opening velocity of the contacts.

  • PDF

The Study of Ag Thin Film of Suitable Anode for T-OLED: Focused on Nanotribology Methode (UV 처리에 의한 T-OLED용 산화전극에 적합한 Ag 박막연구: Nano-Mechanics 특성 분석을 중심으로)

  • Lee, Kyu Young;Kim, Soo In;Kim, Joo Young;Kwon, Ku Eun;Kang, Yong Wook;Son, Ji Won;Jeon, Jin Woong;Kim, Min Chul;Lee, Chang Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.6
    • /
    • pp.328-332
    • /
    • 2012
  • The work function of Ag (silver) is too low (~4.3 eV) to be used as an electrode of T-OLED (Top Emission Organic Light Emitting Diode). To solve this weakness, researches used plasma-, UV-, or thermal treatment on Ag films in order to increase the work function (~5.0 eV). So, most of studies have focused only on the work function of various treated Ag films, but studies focusing on nanomechanical properties were very important to investigate the efficiency and life time of T-OLED etc. In this paper, we focused on the mechanical properties of the Ag and $AgO_x$ film. The Ag was deposited on a glass substrate with the thickness of 150 nm by using rf-magnetron sputter with the power was fixed at 100 W and working pressure was 3 mTorr. The deposited Ag film was UV treated by UV lamp for several minutes (0~9 min). We measured the sheet resistance and mechanical property of the deposited film. From the experimental result, there were some differences of the sheet resistance and surface hardness of Ag thin film between short time (0~3 min) and long time UV treatment. These result presumed that the induced stress was taken place by the surface oxidation after UV treatment.

Electrochemical Migration Characteristics of Sn-3.0Ag-0.5Cu Solder Alloy in NaBr and NaF Solutions (NaBr 및 NaF 용액에 대한 Sn-3.0Ag-0.5Cu 솔더 합금의 Electrochemical Migration 특성)

  • Jung, Ja-Young;Jang, Eun-Jung;Yoo, Young-Ran;Lee, Shin-Bok;Kim, Young-Sik;Joo, Young-Chang;Chung, Tai-Joo;Lee, Kyu-Hwan;Park, Young-Bae
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.57-63
    • /
    • 2007
  • Electrochemical migration characteristics of Pb-free solder alloys are quantitatively correlated with corrosion characteristics in harsh environment conditions. In-situ water drop test and corrosion resistance test for Sn-3.0Ag-0.5Cu solder alloys were carried out in NaBr and NaF solutions to obtain the electrochemical migration lifetime and pitting potential, respectively. Sn-3.0Ag-0.5Cu solder alloy shows similar ionization and electrochemical migration behavior with pure Sn because of Ag and Cu do not migrate due to the formation of resistant intermetallic compounds inside solder itself. Electrochemical migration lifetime in NaBr is longer than in NaF, which seems to be closely related to higher pitting potential in NaBr than NaF solution. Therefore, it was revealed that electrochemical migration lifetime of Sn-3.0Ag-0.5Cu solder alloys showed good correlation to the corrosion resistance, and also the initial ionization step at anode side is believed to be the rate-determining step during electrochemical migration of Pb-free solders in these environments.

Cycling Behavior of Binder-Free Graphite-Lithium Intercalation Anode In AICI3-EMIC-LiCI-SOCI2 Room-Temperature Molten Salt

  • Koura, Nobuyuki;Minami, Takuto;Etoh, Keiko;Idemoto, Yasushi;Matsumoto, Futoshi
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.178-182
    • /
    • 2002
  • The electrochemical behavior of binder-free carbon anode, comprising of only artificial and natural graphite (AG and NG) particles, for intercalation and deintercalation of lithium ion $(Li^+)$ in aluminum chloride (AICI_3)-I-ethyl­3-methylimidazolium chloride (EMIC)-lithium chloride (LiCl)-thionyl chloride $(SOCI_2)$ room-temperature molten salt (RTMS) was studied. Binder-free carbon electrodes were fabricated using electrophoretic deposition (EPD) method. The binder-free carbon anodes provided a relatively flat charge and discharge potentials $(0\;to\;0.2V\;vs.\;Li/Li^+)$ and current capabilities $(250-340mAh{\cdot}g^{-1})$ for the intercalation and deintercalation of $Li^+$. Stability of the binder-free carbon anodes for intercalation and deintercalation of 50 cycles was confirmed.

A study for development of high speed hard chrome plating solution (고속 경질 크롬 도금 용액 개발에 관한 연구)

  • 추현식;이홍로
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.5
    • /
    • pp.263-269
    • /
    • 1992
  • To enhancing efficiency of hard chrome plating solution more highly, cathode current efficiency were surveyed connected with hardness of deposits, surface morphology, TEM analysis and corrosion test of anode materials. Efficiency war increased up to 26% values by adding catalyst and two kind of additives. With given bath composition and 6$0^{\circ}C$, 60A/d$\m^2$ electrolosis conditionss bright and micro cracked deposits were well obtained, which showed HV 1000 values. From corrosion tests, anode materials such as Pb-Te (0.02%) and Pb-Ag(1%) showed most anti-corrosive results. Through SEM micrograph observations, ef-fects of additives on levelling, brightness and micro crack properties of hard chrome deposits could be con-firmed. Also, through TEM analysis the fact that deposits from crack free solution or high speed solution were more fine than from sargent solution could be confirmed.

  • PDF

Disposable Strip-type Sensors for Detection of Free Chlorine (유리염소 측정을 위한 일회용 스트립 센서)

  • Kim, Seung Ki;Kang, Tae Young;Cha, Geun Sig;Nam, Hakhyun;Shin, Jae Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.4
    • /
    • pp.242-248
    • /
    • 2012
  • The measurement of residual chlorine as a disinfectant is very important to ensure the safety against the pathogenic microbes and to suppress injection. The portable free chlorine sensor was fabricated with a disposable strip format by a screen printing method. The strip sensors prepared with a carbon-Ag/AgCl(cathode-anode) combination exhibited less interfering responses towards combined chlorine species(especially $NHCl_2$) and oxygen than the sensors prepared with other metals(i.e., gold and platinum). Free chlorine was determined chronoamperometrically with carbon-based electrodes at an applied potential of -0.3 V(vs. Ag/AgCl). A channel was built on the strip-type electrode for easy sampling, and the resulting strip sensors were employed to determine the concentrations of residual free chlorine.

Fabrication and Performance of Anode-Supported Flat Tubular Solid Oxide Fuel Cell Unit Bundle (연료극 지지체식 평관형 고체산화물 연료전지 단위 번들의 제조 및 성능)

  • Lim, Tak-Hyoung;Kim, Gwan-Yeong;Park, Jae-Layng;Lee, Seung-Bok;Shin, Dong-Ryul;Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.283-287
    • /
    • 2007
  • KIER has been developing the anode-supported flat tubular solid oxide fuel cell unit bundle for the intermediate temperature($700{\sim}800^{\circ}C$) operation. Anode-supported flat tubular cells have Ni/YSZ cermet anode support, 8 moi.% $Y_2O_3$ stabilized $ZrO_2(YSZ)$ thin electrolyte, and cathode multi-layer composed of Sr-doped $LaSrMnO_3(LSM)$, LSM-YSZ composite, and $LaSrCoFeO_3(LSCF)$. The prepared anode-supported flat tubular cell was joined with ferritic stainless steel cap by induction brazing process. Current collection for the cathode was achieved by winding Ag wire and $La_{0.6}Sr_{0.4}CoO_3(LSCo)$ paste, while current collection for the anode was achieved by using Ni wire and felt. For making stack, the prepared anode-supported flat tubular cells with effective electrode area of $90\;cm^2$ connected in series with 12 unit bundles, in which unit bundle consists of two cells connected in parallel. The performance of unit bundle in 3% humidified $H_2$ and air at $800^{\circ}C$ shows maximum power density of $0.39\;W/cm^2$ (@ 0.7V). Through these experiments, we obtained basic technology of the anode-supported flat tubular cell and established the proprietary concept of the anode-supported flat tubular cell unit bundle.

Thin Metal Electrodes for Semitransparent Organic Photovoltaics

  • Lee, Kyu-Sung;Kim, Inho;Yeon, Chang Bong;Lim, Jung Wook;Yun, Sun Jin;Jabbour, Ghassan E.
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.587-593
    • /
    • 2013
  • We demonstrate semitransparent organic photovoltaics (OPVs) based on thin metal electrodes and polymer photoactive layers consisting of poly(3-hexylthiophene) and [6,6]-phenyl $C_{61}$ butyric acid methyl ester. The power conversion efficiency of a semitransparent OPV device comprising a 15-nm silver (Ag) rear electrode is 1.98% under AM 1.5-G illumination through the indium-tin-oxide side of the front anode at 100 $mW/cm^2$ with 15.6% average transmittance of the entire cell in the visible wavelength range. As its thickness increases, a thin Ag electrode mainly influences the enhancement of the short circuit current density and fill factor. Its relatively low absorption intensity makes a Ag thin film a viable option for semitransparent electrodes compatible with organic layers.

p" Color Field Emission Displays Using Carbon Nanotube Emitters

  • Lee, N.S.;Park, W.B.;Kim, J.M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.211-211
    • /
    • 2000
  • Carbon nanotubes (CNTs) have been spotlighted as one of promising field emission displays(FEDs). For the first time, to authors knowledge, we have developed the 9" color CNT-FEDs with the resolution of 240x576 lines. The 9" CNT-FEDs with diode-type and triode-type structures are presented. The well-dispersed CNT paste was squeezed onto the metal-patterned cathode glass. For the anode plate, the Y2O2S:Eu, ZnS:Ag,Cl low-voltage phosphors were printed for red, green, and blue colors, respectively. The vacuum-packaged panel maintained the vacuum level of 1x10-7 Torr. The uniform moving images vacuum-packaged panel maintained the vacuum level of 1x10-7 Torr. The uniform moving images were demonstrated at 2 V/um. High brightness of 800, 200, and 150cd/m2 was observed on the green, red, and blue phosphors at V/um, respectively. Field emission characteristics of a triode-type CNT-FED were simulated using a finite element method. the resultant field strength on the cathode was modulated by gate bias and emitted electrons were focused on the anode. A relatively uniform emission image was experimentally achieved at the 800V anode. A relatively uniform emission image was experimentally achieved at the 800V anode and the 50-180 V gate biases. Energy distribution of electrons emitted from CNTs was measured using an energy analyzer. The maximum peak of energy curve corresponded to the Fermi energy level of CNTs. The whole fabrication processed of CNT-FEDs were fully scalable and reproducible. Our CNT-FEDs has demonstrated the high potential of large-area and full-color applications with very low cost fabrication and low power consumption.

  • PDF

Silver Nanowire Anode-Based, Large-Area Indium Tin Oxide-Free Organic Photovoltaic Cells Fabricated by the Knife Coating Method (나이프 코팅 기법으로 제작한 은 나노와이어 투명전극 기반의 대면적 ITO-Free 유기 태양전지)

  • Han, Kyuhyo;Kim, Gunwoo;Lee, Jaehak;Seok, Jaeyoung;Yang, Minyang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.43-48
    • /
    • 2015
  • Silver nanowire (AgNW) is a material that is increasingly being used for transparent electrodes, as a substitute for indium tin oxide (ITO), owing to its flexibility, high transmittance to sheet resistance ratio, and simple production process. This study involves manufacturing large-area organic photovoltaic cells (OPVs) deposited on AgNW electrodes. We compared the efficiency of OPVs with ITO and AgNW electrodes. The results verified that an OPV with an AgNW electrode performed better than that with an ITO electrode. Furthermore, by using the knife coating method, we successfully fabricated large-area OPVs without the loss of efficiency. Use of AgNW instead of ITO demonstrated that an OPV could be produced on various substrates by the solution process method, dropping the productions costs significantly. Additionally, by using the knife coating method, the process time and amount of wasted solution are reduced. This leads to an increase in the efficient fabrication of the OPV.