• Title/Summary/Keyword: Ag/AgCl

Search Result 530, Processing Time 0.036 seconds

Biological Synthesis of Au Core-Ag Shell Bimetallic Nanoparticles Using Magnolia kobus Leaf Extract (목련잎 추출액을 이용한 Au Core-Ag Shell 합금 나노입자의 생물학적 합성)

  • Song, Jae Yong;Kim, Beom Soo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.98-102
    • /
    • 2010
  • Magnolia kobus leaf extract was used for the synthesis of bimetallic Au core-Ag shell nanoparticles. Gold seeds and silver shells were formed by first treating aqueous solution of $HAuCl_4$ and then $AgNO_3$ with the plant leaf extract as reducing agent. UV-visible spectroscopy was monitored as a function of reaction time to follow the formation of bimetallic nanoparticles. The synthesized bimetallic nanoparticles were characterized with transmission electron microscopy(TEM), energy dispersive X-ray spectroscopy(EDS), and X-ray photoelectron spectroscopy(XPS). TEM images showed that the bimetallic nanoparticles are a mixture of plate(triangles, pentagons, and hexagons) and spherical structures. The atomic Ag contents of the bimetallic Au/Ag nanoparticles determined from EDS and XPS analysis were 34 and 65 wt%, respectively, suggesting the formation of bimetallic Au core-Ag shell nanostructure. This core-shell type nanostructure is expected to have potential for application in surface enhanced Raman spectroscopy and in the sensitive detection of biomolecules.

Adsorptive Stripping Voltammetry of Ge(IV)-Mercaptoacetic Acid Complex (Ge(Ⅳ)-Mercaptoacetic Acid 착물에 의한 흡착벗김 전압-전류법)

  • Park, Chan Il;Seong, Suk Hee;Cha, Ki Won
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.1
    • /
    • pp.36-41
    • /
    • 1999
  • The adsorptive stripping voltammetric determination method of trace germanium (IV) using mercaptoacetic acid as a ligand was studied. Optimal conditions were found to be 0.25 M NaCl solution (pH 6.0) containing mercaptoacetic acid concentration of $5.0{\times}10^{-6}M$. The peak potential appeared at - 1.402 V vs. Ag/AgCl. Effects of sodium chloride concentration, mercaptoacetic acid concentration, and accumulation time for the complex of Ge(IV)-Mercaptoacetic acid on the peak current were studied. Amberlite IRC-718 chelating resin was applied to the separation of Ge(IV) from other metal ions.

  • PDF

Preparation and Characterization of Alginate-Chitosan Microsphere for Controlled Delivery of Silver Sulfadiazine (설파디아진은의 방출제어를 위한 알지네이트-키토산 미립구의 제조 및 특성)

  • Cho, Ae-Ri
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.2
    • /
    • pp.101-106
    • /
    • 2001
  • Alginate-chitosan (anion-cationic polymeric complex) was prepared to control the release rate of silver sulfadiazine (AgSD). Na-alginate (2%) solution containing AgSD was gelled in $CaCl_2$ solution. The gel beads formed were immediately encapsulated with chitosan (CS). The gel matrix and membrane were then reinforced with chondroitin-6-sulfate (Ch6S). Release rate of AgSD from the gel matrix was investigated by placing alginate beads in the sac of cellulose membrane simmered in HEPES-buffer solution. The concentration of AgSD released was analyzed by UV at 264 nm. Incorporation capacity of AgSD in Ca-alginate gel was more than 90%. Alginate-Ch6S-CS could control the release rate of AgSD. The amount of AgSD release was dependent on the AgSD loading dose. Incorporation of tripolyphosphate (polyanionic crosslinker) onto the alginate-Ch6S-CS bead increased the release rate of AgSD. Collagen-coating had no influence on the AgSD release rate. Alginate-Ch6S-CS beads with a sufficiently high AgSD encapsulation were capable of controlling the release of the drug over 10 days. In summary, alginate-Ch6S-CS beads could be used as a sustained delivery for AgSD and provide local targeting with low silver toxicity and patient discomfort.

  • PDF

A New Reference Range of Serum Anion Gap (혈청 Anion gap의 새로운 범위에 관한 연구)

  • Shin Young-Ju;Cheon Hae-Won;Choi Byung-Min;Yoo Kee-Hwan;Hong Young-Sook;Lee Joo-Won;Kim Soon-Kyum
    • Childhood Kidney Diseases
    • /
    • v.2 no.1
    • /
    • pp.9-13
    • /
    • 1998
  • Purpose: The old reference range of serum anion gap(AG) may be excessive compared with value measured by new electrolyte analyzers. Therefore, we studied to establish a new reference range of AG using an autoanalyzer. Methods: With the use of analyzer(Hitachi 747 by enzymatic methods), serum Na and Cl were measured, and with the use of analyzer(CX-3 by differental rage pH), serum $TCO_2$ was measured. We measured AG(=Na-($Cl+HCO_3$)) in 395 stable patients with normal serum albumin and creatinine levels of the pediatric in-patients and out-patients for preoperative examination from march 1997 to July 1997. Results: The normal serum$ AG(mean{\pm}SD)$ were neonate, $11.2{\pm}3.2$ mEq/L; infancy, $11.8{\pm}2.7$ mEq/L; early childhood, $12{\pm}2.7$ mEq/L; late childhood, $11.7{\pm}3.2$ mEq/L; adolescence, $9.6{\pm}2.7$ mEq/L; adult, $9.0{\pm}2.7$ mEq/L. Normal serum AG in more than 10 years of age was significantly lower than the previous normal value and also the difference of AG between more than 10 years and less than 10 years was statistically significant(P<0.05). Conclusions: We suggest to measure serum AG according to each type of analyzers.

  • PDF

Disposable Strip-type Sensors for Detection of Free Chlorine (유리염소 측정을 위한 일회용 스트립 센서)

  • Kim, Seung Ki;Kang, Tae Young;Cha, Geun Sig;Nam, Hakhyun;Shin, Jae Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.4
    • /
    • pp.242-248
    • /
    • 2012
  • The measurement of residual chlorine as a disinfectant is very important to ensure the safety against the pathogenic microbes and to suppress injection. The portable free chlorine sensor was fabricated with a disposable strip format by a screen printing method. The strip sensors prepared with a carbon-Ag/AgCl(cathode-anode) combination exhibited less interfering responses towards combined chlorine species(especially $NHCl_2$) and oxygen than the sensors prepared with other metals(i.e., gold and platinum). Free chlorine was determined chronoamperometrically with carbon-based electrodes at an applied potential of -0.3 V(vs. Ag/AgCl). A channel was built on the strip-type electrode for easy sampling, and the resulting strip sensors were employed to determine the concentrations of residual free chlorine.

Quantitative analysis of silver in chlorinated polymer (Chlorine을 함유한 고분자 물질 중 Ag의 정량분석)

  • Lim, Heon-Sung;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.376-380
    • /
    • 2005
  • Quantitative analysis of silver from the thermal decomposition of chlorinated polymer contained nano silver is described. The chlorine contained in the chlorinated polymer (e.g. PVC) is liberated as hydrochloric acid gas by heating and a lot of silver produces AgCl. $HNO_3$ and $NH_4OH$ were used for dissolving the Ag and the AgCl. The silver complex was formed by $NH_4OH$. Then the complex was decomposed to silver by heating at $500^{\circ}C$ and the Ag was dissolved by dilute $HNO_3$. Recovery of silver in PVC material was 99.0%.

Removal of I by Adsorption with AgX (Ag-impregnated X Zeolite) from High-Radioactive Seawater Waste (AgX (Ag-함침 X 제올라이트)에 의한 고방사성해수폐액으로부터 요오드(I)의 흡착 제거)

  • Lee, Eil-Hee;Lee, Keun-Young;Kim, Kwang-Wook;Kim, Hyung-Ju;Kim, Ik-Soo;Chung, Dong-Yong;Moon, Jei-Kwon;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.223-234
    • /
    • 2016
  • This study aimed to the adsorption-removal of high- radioactive iodide (I) contained in the initially generated high-radioactive seawater waste (HSW), with the use of AgX (Ag-impregnated X zeolite). Adsorption of I by AgX (hereafter denoted as AgX-I adsorption) was increased by increasing the Ag-impregnated concentration in AgX, and its concentration was suitable at about 30 wt%. Because of AgCl precipitation by chloride ions contained in seawater waste, the leaching yields of Ag from AgX (Ag-impregnated concentration : about 30~35 wt%) was less than those in distilled water (< 1 mg/L). AgX-I adsorption was above 99% in the initial iodide concentration ($C_i$) of 0.01~10 mg/L at m/V (ratio of weight of adsorbent to solution volume)=2.5 g/L. This shows that efficient removal of I is possible. AgX-I adsorption was found to be more effective in distilled water than in seawater waste, and the influence of solution temperature was insignificant. Ag-I adsorption was better described by a Freundlich isotherm rather than a Langmuir isotherm. AgX-I adsorption kinetics can be expressed by a pseudo-second order rate equation. The adsorption rate constants ($k_2$) decreased by increasing $C_i$, and conversely increased by increasing the ratio of m/V and the solution temperature. This time, the activation energy of AgX-I adsorption was about 6.3 kJ/mol. This suggests that AgX-I adsorption is dominated by physical adsorption with weaker bonds. The evaluation of thermodynamic parameters (a negative Gibbs free energy and a positive Enthalpy) indicates that AgX-I adsorption is a spontaneous reaction (forward reaction), and an endothermic reaction indicating that higher temperatures are favored.

Effect of Additives on Preparation of Silver Chloride Nanoparticles using AOT-Based W/O Microemulsions (AOT W/O 마이크로에멀젼을 이용한 AgCl 나노입자 제조에서 첨가제의 영향)

  • Jung, KilYong;Lim, JongChoo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.330-339
    • /
    • 2008
  • Effect of additives such as NP series nonionic surfactant and cosurfactant on AgCl nanoparticles was investigated where nanoparticles were prepared using two different types of water-in-oil (W/O) microemulsions containing silver nitrate and sodium chloride, respectively. Phase behavior experiments showed that the region of one phase W/O microemulsion was found to be broadened with an increase in the ethylene oxide length of a nonionic surfactant mainly due to an increase in hydrophilic nature of a surfactant. Photomicrographs obtained by transmission electron microscopy indicated that an increase in ethylene oxide length of a nonionic surfactant results in both increases in particle size and size distribution. Phase behavior experiments for the systems containing AOT surfactant, isooctane and aqueous solution of an inorganic salt showed that addition of a cosurfactant caused a shrinkage in phase region of one phase W/O microemulsion, especially water contents contained in W/O microemulsion with an increase in the chain length or the concentration of a cosurfactant used. Photomicrographs obtained by transmission electron microscopy indicated that characteristics of AgCl nanoparticles produced were dependent both on the radius of spontaneous curvature and film rigidity of a microemulsion.