DOI QR코드

DOI QR Code

AgX (Ag-함침 X 제올라이트)에 의한 고방사성해수폐액으로부터 요오드(I)의 흡착 제거

Removal of I by Adsorption with AgX (Ag-impregnated X Zeolite) from High-Radioactive Seawater Waste

  • 투고 : 2016.04.25
  • 심사 : 2016.07.28
  • 발행 : 2016.09.30

초록

본 연구는 AgX (Ag-함침 X zeolite)에 의해 고방사성해수폐액 (HSW)의 발생초기에 함유되어 있는 고방사성 요오드($^{131}I$)의 흡착, 제거를 목표로 수행하였다. AgX에 의한 I의 흡착 (AgX-I 흡착)은 AgX 내 Ag-함침농도가 증가할수록 증가하며, 함침농도 30wt% 정도가 적당하였다. AgX (Ag-함침 약 30~35wt%)로부터 Ag의 침출농도는 해수폐액에 함유되어 있는 chloride 이온에 의한 AgCl 침전 등으로 증류수보다 덜 침출 (<1 mg/L) 되었다. AgX-I 흡착은 초기 I 농도 0.01~10 mg/L의 경우 m/V(흡착제량/용액부피의 비)=2.5 g/L에서 99% 이상 흡착제거 되어 I의 효율적 제거가 가능함을 알 수 있다. AgX-I 흡착제거는 해수폐액 보다는 증류수에서 수행하는 것이 효과적이고, 온도의 영향은 미미한 것 같으며, 흡착평형등온선은 Languir 보다는 Freundlich 등온선으로 표현하는 것이 양호하였다. 한편 AgX-I 흡착속도는 유사 2차 속도식을 만족하고 있으며, 속도상수 ($k_2$)는 $C_i$ 증가에 따라 감소하고 있지만, m/V 비 및 온도 증가에 따라서는 증가하고 있다. 이때 흡착 활성화에너지는 약 6.3 kJ/mol 로 AgX-I 흡착은 약한 결합형태의 물리적흡착이 지배적일 것으로 보인다. 그리고 열역학적 매개변수를 평가(음수 값의 Gibbs 자유에너지 및 양수 값의 엔탈피)에 의해 AgX-I 흡착이 자발반응(정반응)의 흡열반응이며, 고온에서 반응이 양호함을 나타내었다.

This study aimed to the adsorption-removal of high- radioactive iodide (I) contained in the initially generated high-radioactive seawater waste (HSW), with the use of AgX (Ag-impregnated X zeolite). Adsorption of I by AgX (hereafter denoted as AgX-I adsorption) was increased by increasing the Ag-impregnated concentration in AgX, and its concentration was suitable at about 30 wt%. Because of AgCl precipitation by chloride ions contained in seawater waste, the leaching yields of Ag from AgX (Ag-impregnated concentration : about 30~35 wt%) was less than those in distilled water (< 1 mg/L). AgX-I adsorption was above 99% in the initial iodide concentration ($C_i$) of 0.01~10 mg/L at m/V (ratio of weight of adsorbent to solution volume)=2.5 g/L. This shows that efficient removal of I is possible. AgX-I adsorption was found to be more effective in distilled water than in seawater waste, and the influence of solution temperature was insignificant. Ag-I adsorption was better described by a Freundlich isotherm rather than a Langmuir isotherm. AgX-I adsorption kinetics can be expressed by a pseudo-second order rate equation. The adsorption rate constants ($k_2$) decreased by increasing $C_i$, and conversely increased by increasing the ratio of m/V and the solution temperature. This time, the activation energy of AgX-I adsorption was about 6.3 kJ/mol. This suggests that AgX-I adsorption is dominated by physical adsorption with weaker bonds. The evaluation of thermodynamic parameters (a negative Gibbs free energy and a positive Enthalpy) indicates that AgX-I adsorption is a spontaneous reaction (forward reaction), and an endothermic reaction indicating that higher temperatures are favored.

키워드

참고문헌

  1. Report of Japanese government to the IAEA Ministerial Conference on nuclear safety, "The accident at TEPCO's Fukushima nuclear power stations", June (2011).
  2. Side event by government of Japan at 56th IAEA General Conference. September 17 (2012). "Current status of Fukushima Daiichi nuclear power station", Available from: http://www.nsr.go.jp/archive/nisa/english/files/P-3-1.pdf
  3. S. Koyama, "Generation and treatment of radioactive contained wastewater in the Fukushima nuclear power plant accident", CRIEPI, July 22 (2013).
  4. Tokyo Electric Power Company, "Supplementary materials related equipment for the multi-nuclide removal", A specific nuclear facility assessment review meeting (The 2nd meeting), Note 4, January 24 (2013).
  5. Tokyo Electric Power Company. March 26 2013. "Nuclide analysis results of water at water treatment facility", Available from: http://www.tepco.co.jp/en/nu/fukushima-np/images/handouts_120326_08-e.pdf.
  6. H. Rindo, "Current status and perspective of Fukushima accident remediation", The 10th Anniversary of Korean Radioactive Waste Society, Jeju, Korea, October 17 (2013).
  7. Y. Kani, M. Kamosida, and D. Watanabe, "Removal of radionuclides from wastewater at Fukushima Daiichi nuclear power plant : Desalination and adsorption methods", Hitachi Ltd. (2013).
  8. Wikipedia. January (2014). "Fukushima disaster cleanup", Available from: http://en.wikipedia.org/wiki/Fukushima_disaster_cleanup.
  9. Tokyo Electric Power Company. April 22 2014. "Status of contaminated water treatment and tritium at Fukushima Daiichi nuclear power station", Available from: http://www.meti.go.jp/earthquake/nuclear/pdf/140424/140424_02_008.pdf.
  10. "The Fukushima Daiichi Accident" Report by the Director General, Printed by the IAEA, STI/PUB/1710, August (2015).
  11. T.M. Besmann and T.B. Lindemer, "Chemical thermodynamics of the system Cs-U-Zr-H-I-O in Light Water Reactor fuel cladding gap", Nucl. Tech., 40(3), 297-305 (1978). https://doi.org/10.13182/NT78-A26727
  12. B. Clement, L. Carntrel, G. Ducros, F. Funke, L. Herranz, A. Rydl, G. Weber, and C. Wren, "State of the ART report on iodine chemistry", Nuclear Energy Agency Committee on The Safety of Nuclear Installations, NEA/CSNI/R(2007)1 (2007).
  13. S. Dicknson, H.E. Sims, E.B. Haltier, D. Jacquemain, C. Poletiko, F. Funke, Y. Drossinos, E. Krausmann, B. Herrero, T. Routamo, and B.J. Handy, "Iodine chemistry", The CEC 4th framework programme on nuclear fission safety, (1998).
  14. J.A. Dean, "Lange's Handbook of Chemistry", 12th Edition, 4-40, McGraw-Hill Book Company, New York (1979).
  15. WIKIPEDIA Solubility Table. 2015. Available from: https:/en.wikipedia.org/wiki/solubility _table.
  16. A. Mayoral, T. Carey, P.A. Anderson, and I. Diaz, "Atomic resolution analysis of porous solids : A detailed study of silver ion exchanged zeolite A", Microporous & Mesoporous Mat., 166, 117-122 (2013). https://doi.org/10.1016/j.micromeso.2012.04.033
  17. A.M. Fonseca and I.C. Neves, "Study of silver species stabilized in different microporous zeolites", Microporous & Mesoporous Mat., 181, 83-87 (2013). https://doi.org/10.1016/j.micromeso.2013.07.018
  18. Q.Z. Zhai, S. Qiu, F.S. Xiao, Z.T. Zhang, C.L.Shao, and Y. Han, "Preparation, characterization and optical properties of the host-guest nanocomposite material zeolite-silver iodide", Mater. Research Bulletin, 35, 59-73 (2000). https://doi.org/10.1016/S0025-5408(00)00193-8
  19. B. Riebe, S. Dultz, and C. Bunnenberg, "Temperature effects on iodine adsorption on organo-clay minerals", Applied Clay Sci., 28, 9-16 (2005). https://doi.org/10.1016/j.clay.2004.01.004
  20. H.S. Lim and S.G. Lee, "Removal of $I^-$ and $IO_3{^-}$ from aqueous solution", Anal. Sci. and Tech., 22(6), 519-523 (2009)
  21. H.S. Lim and S.G. Lee, "Removal of $I^-$ and $IO_3{^-}$ from aqueous solution", Korean Pat. No. 10-1046433 (2011).
  22. Y. Wang, H. Gap, A. Miller, and P. Pohl, "A new generation of adsorbent materials for entrapping and immobilizing highly mobile radionuclides", Municipal and Industrial Waste Disposal, 99-118, Sandia National Lab, USA (2014).
  23. T. Nagata, K. Fukushi, and Y. Takahashi, "Prediction of iodide adsorption on oxides by surface complexation modeling with spectroscopic confirmation", J. Colloid & Interface Sci., 332, 309-316 (2009). https://doi.org/10.1016/j.jcis.2008.12.037
  24. K.O. Mito and Y.F. Yokohama, "Process for the separation of radioactive iodine compounds by precipitation", US Pat. No. 5,352,367 (1994).
  25. M.S. Palo, J.R. Utrilla, E. Salhi, and U. Gunten, "Agdoped carbon aerogels for removing halide ions in water treatment", Water Res., 41, 1031-1037 (2007). https://doi.org/10.1016/j.watres.2006.07.009
  26. J.S. Hoskins, T. Karanfil, and S.M. Serkiz, "Removal and sequestration of iodide using silver impregnated activated carbon", Environ Sci. Tech., 36, 784-789 (2002). https://doi.org/10.1021/es010972m
  27. A. Qayoom and S. A. Kazmi, "Effect of temperature on equilibrium and thermodynamic parameters of Cd(II) adsorption onto turmeric powder", J. Chem, Soc., Pak., 34(5) 1084-1090 (2012).
  28. S. M. Yakout and E. Elsherif, "Batch kinetics, isotherm and thermodynamic studies of adsorption of strontium from aqueous solutions onto low cost straw based carbons", Carbon-Sci. Tech., 1, 144-153 (2010).
  29. N. Karkhanei, H. Sepehrian, and R. Cheraghali, "Preparation, characterization and iodide sorption performance of silver-loaded mesoporous MCM-41", Desalination and Water Treat., 56(11), 3096-3105 (2015).
  30. W. Hao, W. Yan, C. Zi, and W.Y. Zhou, "Adsorption behaviors of iodide anion on silver loaded macroporous silicas", Nucl. Sci. Tech., 26, 030301-1-030301-7 (2015).
  31. H. Zhang, X. Gao, T. Guo, Q. Li, H. Liu, X. Ye, M. Guo, and Z. Wu, "Adsorption of iodide ions on a calcium alginate-silver chloride composite adsorbent", Colloids and Surfaces A : Physicochem. and Eng. Aspects, 386, 166-171 (2011).
  32. M. Arshadi, M.J. Amiri, and S. Mousavil, "Kinetic, equilibrium and thermo- dynamic investigations of Ni, Cd, Cu and Co adsorption on barley straw ash", Water Resources and Ind., 6, 1-17 (2014). https://doi.org/10.1016/j.wri.2014.06.001
  33. A. Bouzidi, F. Souahi, and S. Hanini, "Sorption behavior of cesium on Ain Oussera soil under different physicochemical conditions", J. Hazard Mater., 184, 640-646 (2010). https://doi.org/10.1016/j.jhazmat.2010.08.084
  34. K. Volchek, M.Y. Miah, W. Kuang, Z. Demaleki, and F.H. Tezel, "Adsorption of cesium on cement mortar from aqueous solutions", J. Hazard Mater., 194, 331-337 (2011). https://doi.org/10.1016/j.jhazmat.2011.07.111

피인용 문헌

  1. High-temperature Thermal Decomposition of Cs-adsorbed CHA-Cs and CHA-PCFC-Cs Zeolite System, and Sr-adsorbed 4A-Sr and BaA-Sr Zeolite System vol.16, pp.1, 2018, https://doi.org/10.7733/jnfcwt.2018.16.1.49
  2. 활성탄을 이용한 메틸 그린 흡착에 있어서 등온선, 동력학 및 열역학 파라미터에 대한 연구 vol.30, pp.2, 2016, https://doi.org/10.14478/ace.2019.1001
  3. 석탄계 입상활성탄에 의한 Reactive Red 120의 흡착 특성 : 등온선, 동력학 및 열역학 파라미터 vol.31, pp.2, 2016, https://doi.org/10.14478/ace.2020.1007
  4. 활성탄에 의한 Reactive Blue 4 염료의 흡착에 대한 등온선, 동력학 및 열역학적 특성 vol.26, pp.2, 2020, https://doi.org/10.7464/ksct.2020.26.2.122
  5. 활성탄에 의한 Reactive Orange 16 염료 흡착에 대한 공정 파라미터 연구 vol.21, pp.7, 2020, https://doi.org/10.5762/kais.2020.21.7.667
  6. 활성탄에 의한 Acid Black과 Quinoline Yellow의 흡착특성 및 파라미터 vol.26, pp.3, 2016, https://doi.org/10.7464/ksct.2020.26.3.186
  7. 입상 활성탄에 대한 Acid Fuchsin의 흡착특성과 열역학 파라미터 vol.27, pp.1, 2016, https://doi.org/10.7464/ksct.2021.27.1.47