• Title/Summary/Keyword: Ag+ solution

Search Result 664, Processing Time 0.024 seconds

The Crystal Structure of an Iondine Sorption Complex of Dehydrated Calcium and Silver Exchanged Zeolite A ($Ag^+$이온과 $Ca^{2+}$이온으로 치환한 제올라이트 A를 탈수한 후 요오드를 흡착한 결정구조)

  • Bae, Myung-Nam;Kim, Yang;Kim, Un-Sik
    • Korean Journal of Crystallography
    • /
    • v.6 no.2
    • /
    • pp.118-124
    • /
    • 1995
  • The crystal structure of an iodine sorption complex of vacumm-dehydrated Ag+ and Ca2+ exchanged zeolite A(a=12.174(3)Å) has been determined at 21℃ by single-crystal X-ray diffraction techniques in the cubic space group Pm3m. The crystal was prepared by flow method for three days using exchange solution in solution in which mole ratio of AgNO3 and Ca(NO3)2 was 1:150 with total concentration of 0.05 M. The complex was prepared by dehydration at 360℃ and 2×10-6 Torr for 2 days, followed by exposure to about 14.3 Torr of iodine vaporat 80℃ for 24 hours. Full-matrix least-squares refinement converged to the final error indices of R1=0.082, R2=0.068 using 122 reflections for which I > 3σ(I). Two Ag+ ions, 1.1 Ag+ ions, and 4.45 Ca2+ ions per unit cell are located on three different three-fold axes associated with 6-ring oxygens. Two Ag+ ions per unit cell are in the large cavity, 1.399(4)Å from the (111) plane of three oxygens. Another 1.1 Ag+ ions are found at opposite sites. Six iodine molecules are sorbed per unit cell. Each I2 molecule approaches a framework oxide ion axially (O-I=3.43(2)Å, I-I=2.92Å, I-I-O;166.1(3)°), by a charge transfer complex interaction. Two Ag+ ions make a close approach to the iodine molecules (Ag-I ; 2.73(2)Å).

  • PDF

Synthesis, Characterization and Antibacterial Activity of Silver Nanoparticles in Poly(vinyl alcohol) Prepared by Gamma-Ray Irradiation (감마선에 의해 제조된 Poly(vinyl alcohol) 하이드로젤에서 Silver Nanoparticle의 제조 및 항균 특성)

  • Kim, Hyun-A;Park, Jong-Seok;Choi, Jong-Bae;Lim, Youn-Mook;Nho, Young-Chang
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.71-75
    • /
    • 2012
  • In this study, silver nanoparticles (AgNPs) have been prepared by using aqueous $AgNO_3$ solution in the poly(vinyl alcohol) (PVA) hydrogels. PVA powders were dissolved in deionized water, and then irradiated by gamma-ray with a radiation dose of 50 kGy to make hydrogels. PVA hydrogels were dipped into 0.01 and 0.05 M $AgNO_3$ solution for 1 h respectively. After that, the swollen hydrogels were irradiated by gamma-ray at various doses to form AgNPs. UV-vis analysis indicated that the concentration of Ag NPs was enhanced by increasing absorbed dose and the concentration of $AgNO_3$. FE-SEM measurements provided further evidence for the successful formation of Ag NPs in PVA hydrogels. Also, the antibacterial effect of PVA hydrogels stabilized AgNPs against Gram-negative bacteria (S.aureus and E.coli) in liquid as well as on solid growth media has been investigated. The AgNPs consolidated in PVA hydrogel networks have an excellent antibacterial effect.

A study on Stripping Voltammetric Determination of Ag(I) by Poly(3-methylthiophene) Conducting Polymer Film Electrode Containing 18-crown-6 (18-crown-6을 포함하는 poly(3-methylthiophene) 전도성 고분자 막전극에 의한 Ag(I)의 벗김 전압-전류법적 정량에 관한 연구)

  • Lee, Ihn Chong;Sohn, Jeong-In;Kim, Kuk Gin
    • Analytical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.181-186
    • /
    • 1994
  • Using poly(3-methylthiophene) conducting polymer film electrodes, feasiblity for Ag determination by stripping voltammetry has been studied. Ag ions accumulated by complexation with 18-crown-6, which are existing on the surface of the polymer film electrode, migrate inside of polymer film through potential scanning within limited potential range, and then are reduced and oxidized on the glassy carbon substrate. Therefore, the polymer film must have proper thickness and porosity for easy penetration of Ag ions. On the basis of these experimental results, $5.0{\times}10^{-6}M$ Ag(I) in aqueous solution could be determined.

  • PDF

Study on the Corrosin Properties of Au-Ag-Cu Dental Alloys (치과용 Au-Ag-Cu계 합금의 부식특성에 관한 연구)

  • Kim, Bu-Sob
    • Journal of Technologic Dentistry
    • /
    • v.14 no.1
    • /
    • pp.23-43
    • /
    • 1992
  • Corrosion characteristics of four commerial gold-based dental alloys(C-1; Au75%, Ag13.9%, Pd3%, Cu & etc.,8.1%, C-2 ;Au 52.08, Ag 24%, Pd 5%, Cu & etc.,18.92, C-3 ; Au 53%, Ag 22%, Pd 5%, Pt 3% Cu & etc.,17%, C-4 ; Au 53%, Pd4, Pt1.5%, Ag & Cu & etc.,41.5%) and four experimental ternary Au-Ag-Cu alloys(E-1 ; Au 50%, Ag 30%, Cu 20%, E-2 ; Au 50%, Ag 20%, Cu 30%, E-3 ; Au 50%, Ag 10%, Cu 40%, E-4 ; Au 50%, Ag 40%, Cu 10%) were investigated by potentiodynamic polarization analysis and the structure was examined by optical microscope and SEM. All corrosion testing was conducted in 1% NaCl solution. The main results are as follows : 1. The corrosion resistence of commercial alloys was decreased in the order of C-1, C-3, C-4, C-2. C-2. 2. The E-1 and E-3 ternary alloys exhibits the higher corrosion resistence than E-2 and E-4 alloys. 3. The cast microstructure of alloys reveals dendrite morphology which shows the significant microsegregation caused by the difference in the diffusion rate between liquid and solid. 4. It is found that the surface corrosion products were mainly AgCl by X-ray diffraction results.

  • PDF

Antimicrobial Properties and Characteristic Changes of Nylon Treated with Glycidyltrimethylammonium chloride(GTAC) and Silver nanoparticles(AgNPs) (Glycidyltrimethylammonium chloride(GTAC)와 Ag 나노입자 가 코팅된 나일론의 항균성 및 특성변화)

  • Kang, Dakyung;Lee, Jaewoong;Lee, Sang Oh
    • Textile Coloration and Finishing
    • /
    • v.28 no.4
    • /
    • pp.271-279
    • /
    • 2016
  • This study deals with antibacterial properties of nylon fiber treated with glycidyltrimethylammonium chloride(GTAC) and silver nanoparticles(AgNPs). Nylon fibers were soaked into GTAC(2-30%, v:v) solution for 20 min. After sample was pre-drying at $80^{\circ}C$ for 10min and cured at $180^{\circ}C$ for 5min. The AgNPs coating was accomplished by soaking in silver colloid solution at $45^{\circ}C$ for 90min. The coated nylon fibers were characterized by scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS). EDS analysis indicated that AgNPs and GTAC was attached on nylon fibers. The treated nylon fibers showed antimicrobial properties against Escherichia coli(ATCC 43895), Pseudomonas aeruginosa(ATCC 13388) and Staphylococcus aureus(ATCCBAA-1707).

Formation of Carboxymethyl Cellulose Hydrogel Containing Silver Nanoparticle (은 나노입자를 함유하는 카르복시메틸 셀룰로오스 하이드로겔 제조)

  • Park, Jong-Seok;Kuang, Jia;Gwon, Hui-Jeong;Lim, Youn-Mook;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.353-357
    • /
    • 2010
  • Silver nanoparticles (AgNPs) can be used in the areas such as integrate circuit, cell electrode and antimicrobial deodorant. In this study, AgNPs have been prepared by using $AgNO_3$ aqueous solution in the carboxymethyl cellulose (CMC) hydrogel. CMC powders were dissolved in deionized water, and then irradiated by a gamma-ray with a radiation dose of 50 kGy to make CMC hydrogel. CMC hydrogels were dipped into $1.0{\times}10^{-2}M$ $AgNO_3$ solution for 1 hour. After that, the swollen hydrogels were irradiated by gamma-ray for the formation of AgNPs. The characteristics of silver nanoparticles in the CMC hydrogels were monitored by UV-Vis and the morphological study and dispersed coefficient of particles were investigated by FE-SEM/EDX. It was observed that the sodium salt in the CMC is crucial to the formation of silver nanoparticle. Finally, antibacterial tests indiacted that the hydrogel containing silver nanoparticle has antibacterial activity.

Synthesis of Cysteine Capped Silver Nanoparticles by Electrochemically Active Biofilm and their Antibacterial Activities

  • Khan, Mohammad Mansoob;Kalathil, Shafeer;Lee, Jin-Tae;Cho, Moo-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2592-2596
    • /
    • 2012
  • Cysteine capped silver nanoparticles (Cys-AgNPs) have been synthesized by employing electrochemically active biofilm (EAB), $AgNO_3$ as precursor and sodium acetate as electron donor in aqueous solution at $30^{\circ}C$. Cys-AgNPs of 5-10 nm were synthesized and characterized by UV-Vis, FT-IR, XRD and TEM. Capping of the silver nanoparticles with cysteine provides stability to nanoparticles by a thiolate bond between the amino acid and the nanoparticle surface and hydrogen bonding among the Cys-AgNPs. In addition, the antibacterial effects of as-synthesized Cys-AgNPs have been tested against two pathogenic bacteria Escherichia coli (O157:H7) and Pseudomonas aeruginosa (PAO1). The results demonstrate that the as-synthesized Cys-AgNPs can proficiently inhibit the growth and multiplication of E. coli and P. aeruginosa.

Preparation and characterization of expanded graphite/Ag nanoparticle composites for the improvement of thermal diffusion

  • Hong, Seok Hwan;Lee, Won Gyu
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.410-415
    • /
    • 2018
  • Expanded graphite (EG)/Ag nanoparticle composites were synthesized by the chemical reduction of Ag ions, followed by the addition of expanded graphite into an Ag reducing solution. The prepared composites showed uniform dispersion of Ag nanoparticles on the surface of expanded graphite and exhibited relatively higher thermal conductivities than those of pure expanded graphite. In the case of 10% Ag content in the composite, the thermal conductivity in the thickness direction was 78% higher than the pure expanded graphite. We suggest that EG/Ag nanoparticle composites are a strong candidate for advanced heat spreading material.

Electrolytic silane deposition to improve the interfacial adhesion Ag and epoxy substrate (Ag/에폭시간 계면 접착력 향상을 위한 전해 실란 처리)

  • Wonhyo Kong;Gwangryeol Park;Hojun Ryu;Inseob Bae;Sung-il Kang;Seunghoe Choe
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.1
    • /
    • pp.77-83
    • /
    • 2023
  • The reliability of leadframe-based semiconductor package depends on the adhesion between metal and epoxy molding compound (EMC). In this study, the Ag surface was electrochemically treated in a solution containing silanes in order to improve the adhesion between Ag and epoxy substrate. After electrochemical treatment, the thin silane layer was deposited on the Ag surface, whereby the peel strength between Ag and epoxy substrate was clearly improved. The improvement of peel strength depended on the functional group of silane, implying the chemical linkage between Ag and epoxy.

Fabrication of CO2 Sensor Membrane by Photolithographic Method (사진식각법을 이용한 CO2 센서 감지막의 제조)

  • Park, Lee Soon;Kim, Sang Tae;Koh, Kwang-Nak
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.6-12
    • /
    • 1998
  • A FET(Field Effect Transistor) type dissolved $CO_2$ sensor based on Severinghaus type $CO_2$ sensor was fabricated by the photolithographic process. The sensor consists of Ag/AgCl reference electrode and membranes (hydrogel membrane and $CO_2$ gas permeable membrane) on the pH-ISFET base chip. Ag/AgCl reference electrode was fabricated as follows. Ag layer was thermally evaporated and then its upper surface was chemically chloridized into the AgCl. The hydrogel used as an internal electrolyte solution was fabricated by a photolithographic method using 2-hydroxyethyl methacrylate(HEMA) and acrylamide. $CO_2$ permeable membrane on the top of the hydrogel layer was formed by photolithographic process with UV-oligomer. The FET type $pCO_2$ sensor fabricated by photolithographic method showed good linearity within the concentration range of $10^{-3}{\sim}10^0mole/{\ell}$ of dissolved $CO_2$ in aqueous solution with high sensitivity.

  • PDF