DOI QR코드

DOI QR Code

Synthesis, Characterization and Antibacterial Activity of Silver Nanoparticles in Poly(vinyl alcohol) Prepared by Gamma-Ray Irradiation

감마선에 의해 제조된 Poly(vinyl alcohol) 하이드로젤에서 Silver Nanoparticle의 제조 및 항균 특성

  • 김현아 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부) ;
  • 박종석 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부) ;
  • 최종배 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부) ;
  • 임윤묵 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부) ;
  • 노영창 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부)
  • Received : 2011.07.04
  • Accepted : 2011.08.03
  • Published : 2012.01.25

Abstract

In this study, silver nanoparticles (AgNPs) have been prepared by using aqueous $AgNO_3$ solution in the poly(vinyl alcohol) (PVA) hydrogels. PVA powders were dissolved in deionized water, and then irradiated by gamma-ray with a radiation dose of 50 kGy to make hydrogels. PVA hydrogels were dipped into 0.01 and 0.05 M $AgNO_3$ solution for 1 h respectively. After that, the swollen hydrogels were irradiated by gamma-ray at various doses to form AgNPs. UV-vis analysis indicated that the concentration of Ag NPs was enhanced by increasing absorbed dose and the concentration of $AgNO_3$. FE-SEM measurements provided further evidence for the successful formation of Ag NPs in PVA hydrogels. Also, the antibacterial effect of PVA hydrogels stabilized AgNPs against Gram-negative bacteria (S.aureus and E.coli) in liquid as well as on solid growth media has been investigated. The AgNPs consolidated in PVA hydrogel networks have an excellent antibacterial effect.

본 연구는 폴리(비닐 알코올)(PVA) 하이드로젤 안에 $AgNO_3$ 용액을 이용하여 은 나노입자(AgNPs)를 제조하였다. PVA 입자를 증류수에 용해시킨 후, 50 kGy 감마선을 조사하여 PVA 하이드로젤을 제조하였다. 감마선을 이용하여 제조된 PVA 하이드로젤을 0.01, 0.05 M 질산은 수용액에 1시간 동안 침지후, 팽윤된 하이드로젤을 꺼내 감마선을 재조사하여 PVA 하이드로젤 내부에 AgNPs를 제조하였다. AgNPs가 함유된 PVA 하이드로젤의 UV 흡수 특성 및 FE-SEM 측정 결과, 감마선 조사량이 증가할수록 AgNPs의 생성이 증가하는 것을 확인할 수 있었으며, 같은 조사량에서 $AgNO_3$ 용액의 농도가 클수록 AgNPs 생성이 증가하였다. 액체배지 및 고체배지를 이용하여 그람 음성 세균인 E.coli와 S.aureus에 대한 PVA 하이드로젤에 생성된 AgNPs의 항균 실험 결과 매우 우수한 항균 효과를 나타냈다.

Keywords

References

  1. S. N. Kim, J. Roh, M. S. Kang, Y. S. Han, B. S. Lee, Y. Kim, K. Park, K. Choi, and E. J. Park, Environ. Health Toxicol., 25, 215 (2010).
  2. K. H. Cho and S. G. Park, J. Korean Ind. Eng. Chem., 15, 952 (2004).
  3. T. N. Kim, Q. L. Fen, O. J. Kim, J. Wu, H. Wang, G. C. Chen, and F. Z. Cui, J. Mater. Sci. Med., 9, 129 (1998). https://doi.org/10.1023/A:1008811501734
  4. C. J. Lee, D. Y. Kim, and B. S. Kim, J. Korean Ind. Eng. Chem., 18, 396 (2007).
  5. I. S. Hwang, J. Y. Cho, J. H. Hwang, B. Hwang, H. Choi, J. Lee, and D. G. Lee, Korean J. Microbiol. Biotechnol., 39, 1 (2011).
  6. J. Y. Kim, T. Y. Kim, and J. Y. Yoon, J. Korean Ind. Eng. Chem., 20, 251 (2009).
  7. B. He, J. J. Tan, K. Y. Liew, and H. Liu, J. Mol. Catal. A-Chem., 221, 121 (2004). https://doi.org/10.1016/j.molcata.2004.06.025
  8. N. M. Huang, H. N. Lim, S. Radiman, P. S. Khiew, W. S. Chiu, R. Hashim, and C. H. Chia, Colloid Surface A, 353, 69 (2010). https://doi.org/10.1016/j.colsurfa.2009.10.023
  9. X. Sun and Y. Luo, Mater. Lett., 59, 3847 (2005). https://doi.org/10.1016/j.matlet.2005.07.021
  10. T. M. Tolaymat, E. L. Badawy, A. M. Genaidy, K. G. Scheckel, T. P. Luxton, and M. Suidan, Sci. Total Environ., 408, 999 (2010). https://doi.org/10.1016/j.scitotenv.2009.11.003
  11. V. K. Rana, O. S. Kushwaha, R. Singh, S. Mishra, and C. S. Ha, Macromol. Res., 18, 713 (2010). https://doi.org/10.1007/s13233-010-0801-9
  12. B. C. Ji, E. M. Lee, and J. H. Yeum, Polymer(Korea), 34, 341 (2010)
  13. K. Naghavi, E. Saion, K. Rezaee, and W. M. M. Yunus, Rad. Phys. Chem., 79, 1203 (2010). https://doi.org/10.1016/j.radphyschem.2010.07.009
  14. E. K. Choi, H. I. Kim, K. R. Park, and Y. C. Nho, J. Korean Ind. Eng. Chem., 14, 505 (2003).
  15. K. R. Park and Y. C. Nho, Polymer(Korea), 26, 792 (2002).
  16. Y. Zheng, M. K. Nguyen, C. He, C. T. Huynh, and D. S. Lee, Macromol. Res., 18, 1096 (2010). https://doi.org/10.1007/s13233-010-1110-z
  17. M. K. Nguyen and D.S. Lee, Macromol. Res., 18, 284 (2010). https://doi.org/10.1007/s13233-010-0315-5
  18. W. S. Ryu, S. J. Lee, W. S. Choi, S. S. Lee, and J. Y. Lee, News and Information for Chemical Enginners, 20, 143 (2002).
  19. D. A. Ossipov and J. Hilborn, Macromolecules, 39, 1709 (2006). https://doi.org/10.1021/ma052545p
  20. K. H. Purss, G. G. Qiao, and D. H. Solomon, J. Appl. Polym. Sci., 96, 780 (2005). https://doi.org/10.1002/app.21511
  21. Z. Ajji, Radiat. Phys. Chem., 74, 36 (2005). https://doi.org/10.1016/j.radphyschem.2004.12.005
  22. S. Benamer, M. Mahlous, A. Boukrif, B. Masouri, and Y. S. Larbi, Nucl. Instrum. Methods Phys. Res. B, 248, 284 (2006). https://doi.org/10.1016/j.nimb.2006.04.072
  23. P. Marthens and K. S. Anseth, Polymer, 41, 7715 (2000). https://doi.org/10.1016/S0032-3861(00)00123-3
  24. Y. M. Mohan, K. Lee, T. Premkumar, and K. E. Geckeler, Polymer, 48, 158 (2007). https://doi.org/10.1016/j.polymer.2006.10.045
  25. P. S. Gils, D. Ray, and P. K. Sahoo, Int. J. Biol. Macromol., 46, 237 (2010). https://doi.org/10.1016/j.ijbiomac.2009.12.014
  26. Y. M. Mohan, K. Vimala, V. Thomas, K. Varaprasad, B. Sreedhar, S. K. Bajpai, and K. M. Raju, J. Colloid Interface Sci., 342, 73 (2010) https://doi.org/10.1016/j.jcis.2009.10.008
  27. Y. H. Kim, J. Korean Ind. Eng. Chem., 14, 487 (2003).
  28. F. K. Liu, Y. C. Hsu, M. H. Tsai, and T. C. Chu, Mater. Lett., 61, 2402 (2007). https://doi.org/10.1016/j.matlet.2006.07.193
  29. Y. S. Liu, S. M. Chen, L. Zhong, and G. Z. Wu, Radiat. Phys. Chem., 78, 251 (2009). https://doi.org/10.1016/j.radphyschem.2009.01.003