• 제목/요약/키워드: Aftershock

검색결과 36건 처리시간 0.024초

Collapse Vulnerability and Fragility Analysis of Substandard RC Bridges Rehabilitated with Different Repair Jackets Under Post-mainshock Cascading Events

  • Fakharifar, Mostafa;Chen, Genda;Dalvand, Ahmad;Shamsabadi, Anoosh
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권3호
    • /
    • pp.345-367
    • /
    • 2015
  • Past earthquakes have signaled the increased collapse vulnerability of mainshock-damaged bridge piers and urgent need of repair interventions prior to subsequent cascading hazard events, such as aftershocks, triggered by the mainshock (MS). The overarching goal of this study is to quantify the collapse vulnerability of mainshock-damaged substandard RC bridge piers rehabilitated with different repair jackets (FRP, conventional thick steel and hybrid jacket) under aftershock (AS) attacks of various intensities. The efficacy of repair jackets on post-MS resilience of repaired bridges is quantified for a prototype two-span single-column bridge bent with lap-splice deficiency at column-footing interface. Extensive number of incremental dynamic time history analyses on numerical finite element bridge models with deteriorating properties under back-to-back MS-AS sequences were utilized to evaluate the efficacy of different repair jackets on the post-repair behavior of RC bridges subjected to AS attacks. Results indicate the dramatic impact of repair jacket application on post-MS resilience of damaged bridge piers-up to 45.5 % increase of structural collapse capacity-subjected to aftershocks of multiple intensities. Besides, the efficacy of repair jackets is found to be proportionate to the intensity of AS attacks. Moreover, the steel jacket exhibited to be the most vulnerable repair intervention compared to CFRP, irrespective of the seismic sequence (severe MS-severe or moderate AS) or earthquake type (near-fault or far-fault).

Local Seismic Activity around the Lützow-Holm Bay, East Antarctica

  • Kaminuma, Katsutada;Kanao, Masaki
    • Ocean and Polar Research
    • /
    • 제26권3호
    • /
    • pp.523-529
    • /
    • 2004
  • The seismic monitoring at Syowa Station$(69^{\circ}S,\;39^{\circ}E: SYO)$, located on the continental margin of the Eastern Dronning Maud Land, East Antarctica, began in 1959. Phase readings of the earthquakes have been reported since 1967 and have been annually published as part of the Data Report Series of the National Institute of Polar Research since 1968. An observation of a tripartite seismic network was carried out at SYO for a period of three years from 1987 to 1990. Epicenters of local earthquakes were determined for the first time by using the array network for the three-year period. Many different types of earthquakes, such as the mainshock-aftershock type, twin earthquake, earthquake swarms, etc., were detected during the period. After this, local events around SYO have been detected empirically from their waveforms recorded on seismograms. The seismic activity for the period of 1987-1990 was higher than that of the following decade. Earthquake epicenters, occurring during that period, were highly localized along the coast and in the central part of the $L\"{u}tzow-Holm$ Bay (LHB). Nine local earthquakes, recorded during the period of 1990-1996, showed many different types of events. The seismicity for the period of 1990-1996 was very low and the magnitudes ranged from 0.1 to 1.4. The locations of some events were determined by using the single station method for SYO, i.e., using the particle motions of the initial phase and S-P time. Two local events were detected in 1998 and one event in 2001. It would be estimated that the stress concentration was related to the glacial rebound around the LHB. Afterwards, we will be able to eventually examine the relationship between the seismicity around Antarctica and deglacial phenomena such as crustal uplift, and sea level change within the earth environmental system.

Computational earthquake performance of plan-irregular shear wall structures subjected to different earthquake shock situations

  • Cao, Yan;Wakil, Karzan;Alyousef, Rayed;Yousif, Salim T.;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Mohamed, Abdeliazim Mustafa
    • Earthquakes and Structures
    • /
    • 제18권5호
    • /
    • pp.567-580
    • /
    • 2020
  • In this paper, irregularly designed planar reinforced concrete wall structures are investigated computationally. For this purpose, structures consisting of four regular and irregular models of short-order (two-class) and intermediate (five-class) types have been investigated. The probabilistic evaluation of seismic damage of these structures has been performed by using the incremental inelastic dynamic analysis to produce the seismic fragility curve at different levels of damage. The fragility curves are based on two classes of maximum damage indices and the Jeong-Nansha three-dimensional damage index. It was found that there is a significant increase in damage probability in irregular structures compared to regular ones. The rate of increase was higher in moderate and extensive damage levels. Also, the amount of damage calculated using the two damage indices shows that the Jeong-Nensha three-dimensional damage index in these types of structures provides superior results.

Seismic performance assessments of precast energy dissipation shear wall structures under earthquake sequence excitations

  • Zhang, Hao;Li, Chao;Wang, Zhi-Fang;Zhang, Cai-Yan
    • Earthquakes and Structures
    • /
    • 제18권2호
    • /
    • pp.147-162
    • /
    • 2020
  • This paper presents a novel precast energy dissipation shear wall (PEDSW) structure system that using mild steel dampers as dry connectors at the vertical joints to connect adjacent wall panels. Analytical studies are systematically conducted to investigate the seismic performance of the proposed PEDSW under sequence-type ground motions. During earthquake events, earthquake sequences have the potential to cause severe damage to structures and threaten life safety. To date, the damage probability of engineering structures under earthquake sequence has not been included in structural design codes. In this study, numerical simulations on single-story PEDSW are carried out to validate the feasibility and reliability of using mild steel dampers to connect the precast shear walls. The seismic responses of the PEDSW and cast-in-place shear wall (CIPSW) are comparatively studied based on nonlinear time-history analyses, and the effectiveness of the proposed high-rise PEDSW is demonstrated. Next, the foreshock-mainshock-aftershock type earthquake sequences are constructed, and the seismic response and fragility curves of the PEDSW under single mainshock and earthquake sequences are analyzed and compared. Finally, the fragility analysis of PEDSW structure under earthquake sequences is performed. The influences of scaling factor of the aftershocks (foreshocks) to the mainshocks on the fragility of the PEDSW structure under different damage states are investigated. The numerical results reveal that neglecting the effect of earthquake sequence can lead to underestimated seismic responses and fragilities, which may result in unsafe design schemes of PEDSW structures.

역단층성 변위에 의한 Coulomb stress transfer (Coulomb stress transfer due to reverse faulting displacement field)

  • 고민석;장찬동;이준복;심택모
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2008년도 공동학술대회
    • /
    • pp.149-154
    • /
    • 2008
  • 소규모 역단층성 변위에 의한 단층주변부의 Coulomb stress의 변화를 모델 분석하였다. 본 연구에서 사용된 단층의 기하학적 형태와 응력자료는 경주시에 위치한 제4기 단층인 읍천단층의 조건을 적용하였다. Coulomb stress 모델링에서 단층면을 따라 역단층성 소규모 변위(10cm)를 가정할 경우 단층의 가장자리 주변(주향방향 양끝과 경사방향)에서 Coulomb stress의 변화가 상대적으로 높게(>2 bar) 나타났고 단층의 상하부에서 감소하는 경향을 보였다. 단층의 수직적인 단면에서는 단층의 직하부와 단층 주향의 수직방향에 "T" 자 형태의 낮은 음의 값을 보였다. 본 연구 결과는 주 단층의 역단층성 변위에 의해 나타나는 여진의 전파경로 양상을 보여준다.

  • PDF

2016년 9월 경주지진 소고(小考) (Discussions on the September 2016 Gyeongju Earthquakes)

  • 이기화
    • 지구물리와물리탐사
    • /
    • 제20권3호
    • /
    • pp.185-192
    • /
    • 2017
  • 2016년 9월 12일 규모 5.8의 본진을 포함한 일련의 지진들이 경주에서 발생했다. 본진은 1905년 한반도에서 지진관측을 시작한 이래 반도 남부에서 발생한 최대의 지진으로서 양산단층이 명백한 활성단층임을 입증하였다. 콘래드 불연속면이 없는 단층의 한반도 지각 모델에 의한 경주지진들의 전진, 본진, 여진들의 평균깊이는 12.9 km로 콘래드 불연속면이 있는 2층 구조의 IASP91 모델에 의한 평균깊이보다 2.8 km 낮다. 경주지역에서 발생한 역사지진 및 계기지진들의 진앙분포는 주 단층인 양산단층과 부속 단층을 포함하는 양산단층계가 광범위한 파쇄대임을 시사한다. 규모 5.8의 경주지진에 수반한 지진들의 진앙분포는 양산단층계의 몇 단층들이 응력에너지의 방출에 관여하였음을 지시한다. 경주지진들의 주요 지진들이 지표가 아닌 10 km 이하에서 발생한 것은 양산단층계의 심부 활성단층들의 분포를 연구할 필요성을 제기한다. 경주지역의 지진자료에 근거하여 추정한 이 일대의 최대지진의 규모는 7.3이다. 한반도의 가장 완전한 1978년 이후의 지진자료를 이용하여 추정한 경주지역의 규모 5.0, 6.0, 7.0을 초과하는 지진들의 재현간격은 각기 80년, 670년, 그리고 5,900년이다. 2016년 9월 경주지진들은 본질적으로 판내부지진활동의 범주에 속하며 2011년 3월 11일 일본해구에서 발생한 판경계지진횔동인 동일본대지진과는 무관하다.